ABSTRACT

MSC/NASTRAN's heat transfer capability can be used to calcu-
late electrostatic fields in three—~dimensional regions of
variable permittivity. This paper presents calculations of
the electrostatic fields along a pole-type three-phase high
voltage transmission line. Graphical displays of contours

of constant voltage are presented at various locations
along the line.

INTRODUCTION

Overhead electric transmission lines consist of wire cables
suspended from towers or poles. Increasingly high trans-
mission line voltages produce high electric fields that
affect the adjacent environment and determine line relia-
bility and losses. To minimize the electric field and
assocliated corona losses, environmental impact, and proba-
bility of arcing, it is desirable to be able to calculate
the electric field produced by lines having a variety of
geometric configurations and material permittivities.

While the finite element method is often used in the struc-
tural analysis of transmission lines, it has seldom been used
to calculate their electric fields. A recent IEEE subcom-
mittee report [1] compares seven methods of calculating
transmission line electric fields, but does not mention fin-
ite elements. The only paper found on finite element analy-
sis of transmission line electric fields is restricted to
one-dimensional elements [2].

It is known that electrostatic fields are analogous to ther-
mal fields (31, and therefore they can be calculated by MSC/
NASTRAN [4] - [6]. This paper will first review the electric
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field analogy and the analogous MSC/NASTRAN inputs and
outputs. Then it will discuss the generation and solution
of a three-dimensional finite element model for the electric
fields of a steel-pole-type three-phase transmission line.

ELLECTROSTATIC FIELD ANALOGY

One of Maxwell's four basic electromagnetic equations is
the continuity equation for the electric field E:

V-e¢cE=p (1)

where ¢ is permittivity (dielectric constant) and p is
volumetric charge density. E is related to electrostatic
voltage (potential) ¢ by

E=-V ¢ (2)

Substituting (2) in (1) gives the differential equation

for electrostatic fields:
VeeVed+p=0 (3)

This is recognized as the basic diffusion equation. It

is analogous to the equation of heat diffusion:
V-kVT+qg= pc (3T/3t) (4)

where k is thermal conductivity, T is temperature, q is
internal heat generation per unit volume, and pc is heat

capacity per unit volume.

The heat diffusion equation (4) is solved by MSC/NASTRAN.
Table I lists the analogous variables for equations (3)

and (4), along with their names in the MSC/NASTRAN input
and output. Also, Table I lists additional electrostatic
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and thermal quantities that are volumetric, having no

meaning at a point.

The volumetric thermal parameters include total heat flow

Q, defined as

where v is volume.

coefficient h, according to:

Q = h s (AT)

(5)

Related to Q is.the convective film

(6)

where s is surface area and A indicates a difference.

In analogy with Equations (5) and (6), in electrostatic

problems charge Qe is defined as

p dv

v

TABLE I.

(7

ANALOGOUS THERMAL AND ELECTROSTATIC PARAMETERS

MSC/NASTRAN
Name

Temperature
Conductivity
Temperature Gradient
Heat Flux

Internal Heat
Generation

Total Heat Flow

Convective Film
Coefficient

Thermal Symbol
Egs. 4 or 6

T

k

VT
-kVT

q
Q

Electrostatic

Symbol
Egs. 3 or 8
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m
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Qo
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Also, capacitance C is related to charge and potential
difference (A¢) as

Q, = C (4¢) (8)

If the relations of Table I are kept in mind, the use of
MSC/NASTRAN for electrostatic problems is straightforward.
Executive, Case Contral, and Bulk Data decks are prepared
as for Approach Heat.

Executive control should specify SOL 24 (linear steady
state) with NASTRAN HEAT = 1. In the Bulk Data deck, SPC's
constrain voltages rather than temperatures. MAT4 cards
contain permittivities, and QVOL cards specify charge den-
sities (if any). All the two- and three-dimensional heat
conduction elements are available for modelling complex di-

electric and conductor shapes.

TRANSMISSION LINE MODEL

Figure 1 shows a typical three-phase pole-type transmission
line. Each steel pole has three steel arms with dielectric
insulators from which the three energized phase wires are
suspended. An additional wire is attached without insula-
tors to the top of all the poles to provide protection
against lightning.

A proper finite element model for the electric fields of

the transmission line will be very different from a struc-
tural model of the line. Unlike structural models, electro-
static models must include finite elements that cover all of
the adjacent environment. Therefore the finite element model

of Figure 1 must include many air elements.
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Figure 2 shows the finite element model developed for one-
half span of the line of Figure 1. The span between poles
is 300 meters, and thus Figure 2 shows a model extending
150 meters along the line's z direction. The ground is as-
sumed (for simplicity only) to be flat and to be of high
electrical conductivity. Thus the ground plane at y=0 is
at ground potential of zero volts, and the earth below the
surface need not be modelled. The steel pole and arms have
such high conductivity that they are also at ground poten-
tial, and they are thin enough so that they can be considered
as lines. Thus Figure 2 shows that the pole and arms are
straight lines connecting certain grid points in the z=0

plane which are constrained to zero potential via SPC1l cards.

The four suspended wires are also shown in Figure 2 as
straight lines extending in the -z direction. The dielectric
insulators above all of the three energized phase wires are
each modelled using solid three-dimensional CHEXA elements.
There are 6 such CHEXA elements having the permittivity
(specified on their MAT4 card) of porcelain, which is 5.0
times the permittivity of air.

As Figure 2 shows, there are very many finite elements of

air, in fact, 2514 of them. They are smaller in the regions
near the high voltage wires, where the electric field is
expected to be highest and most rapidly changing with posi-
tion. They extend 60 meters in the x and y directions, and
thereby include all of the "adjacent" environment. The. 2520
finite elements and 3150 GRID point input cards were all
generated with the aid of the Generate New Data command of
AOS/GRAFAX, a proprietary finite element processor program [71].
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FIGURE 2.
Finite Element Model of one-half span of Figure 1.



CALCULATED FIELDS AND VOLTAGES

The voltages applied to the three phase wires vary sinu-
soidally with time at three different phase angles. Thus
the electric fields and voltages throughout the region will
also vary with time.

The voltages of phase wires A, B, and C for a balanced sys-

tem are:
v, = V2 Vioms €08 (wt) (9)
Vg = V2 V. nsg COS (wt+120°) (10)
Vo =v2 Vv cos (2t-120°) (11)
where Vrms is the rms transmission voltage, which ranges

from 34.5 KV to 1200 KV today, and will probably increase

in future years.

For illustrative purposes, consider t=0, the instant when
the voltage in phase A is peaking and phases B and C both
have voltages that are -0.5 times that of phase A. These
voltage constraints were input to MSC/NASTRAN and the re-
sulting instantaneous electrostatic fields and voltages
were calculated.

The resulting contours of constant voltage are shown in
Figures 3 through 10. Each figure is for a plane of con-
stant z, where z decreases from 0 to -150 m. Notice that
at z=0 (Figures 3 and 4) the zero volt contour clearly con-
forms with the pole and its arms. At z=-0.15 m (Figure 5)
the pole contour disappears, but the other voltage contours
are not changed much at all. At 2z=-1.0 m the contours
change, and continue to change perceptibly through z=-35
meters (Figure 10).
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From z=-35 through 2z=-150 meters there is little percep-
tible change in the voltage contours. The contours are
identical in this region because it is far from any steel
pole, and because the model of Figure 2 assumes that all
four wires have zero sag. The model could be easily al-=
tered to include any wire deflections due to gravity and/
or wind as calculated by Approach Displacement of Msc/
NASTRAN. In any case, it is expected that the highest con-
centration of voltage contours, and therefore the highest
E field, will remain near the three energized phase wires
as shown in Figures 3 through 8.

Solution time for the above electrostatic fields was approx-
imately 5 minutes on an IBM 370/165 computer. Only one
matrix decomposition is necessary for as many solutions at

as many instants of time as desired.

LINE IMPEDANCES

A transmission line has an equivalent circuit made up of
impedances related to its electric and magnetic fields. The
circuit has a series impedance consisting of a resistance
plus an inductive reactance, and a parallel impedance con-
sisting of a capacitive reactance.

Capacitive reactances can be calculated using the output of
MSC/NASTRAN. Program output includes the "strain energy",
which is the energy stored in the region analyzed. In a re-
gion with an electrostatic field set up by constraining
(energizing) only two electrodes, one at ¢ = V and the other

at ¢ = 0, the stored energy is

w=-§-cv2 (12)
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where C is the capacitance between the electrodes. Thus C
is easily calculable from the W (strain energy) output
by MSC/NASTRAN:

c = 2 wv? (13)

While the parallel capacitance of a transmission line is
determined by the electrostatic fields, the line's series
impedance is determined by its alternating magnetic fields.
The series impedance (as a function of frequency) and mag-
netic field distribution can be calculated using a finite
element program called AOS/MAGNETIC. [6]

CONCLUSIONS

MSC/NASTRAN's heat transfer capability can calculate the
three-dimensional electrostatic fields of transmission
lines. Calculated voltage contour plots show that typical
steel poles have a significant effect on the electrostatic
field, causing it to vary along the line.

Not only is the electric field calculable, but so is the
related line capacitance. Finite element calculation of
line capacitance and other impedances should aid in the
development of more efficient and reliable electric power

transmission systems.

ACKNOWLEDGEMENT

The author thanks Todd R. Gerhardt for his assistance in

making the model.



-15-

REFERENCES

(1]

(2]

(31

(41

(5]

(6]

(71

Corona and Field Effects Subcommittee, "A Survey of
Methods for Calculating Transmission Line Conductor

Surface Voltage Gradients", IEEE Trans., Vol PAS-98,
Nov/Dec 1979.

W. Janischewskyj and G. Gela, "Finite Element Solution
for Electric Fields of Coronating DC Transmission
Lines", TEEE Trans., Vol PAS-98, May 1979, pp. 1000-
1012.

0. C. Zienkiewicz, P. L. Arlett, and A. K. Bahrani,
"Solution of Three-Dimensional. Field Problems by the
Finite Element Method", The Engineer, 27 October 1967.

J. R. Brauer, "Finite Element Analysis of Electric
Fields Using MSC/NASTRAN", Proceedings of Conference
on Computer Techniques for Electrostatic Fields,
University of California at Santa Barbara, July 1978.

J. R. Brauer, Richard J. Sojka, and David H. Horn,
"Finite Element Analysis of Electrostatic Fields in
High Voltage Apparatus", IEEE Aerospace High Voltage
Workshop, Clarksburg, MD, October 1980.

J. R. Brauer, "Finite Element Analysis of Electric and
Magnetic Fields", Chautauqua Conference on Finite Ele-
ment Modeling, Cape Cod, MA, September 1980.

J. L. Lambert, "GRAFAX - Interactive Pre- and Post-
Processor for MSC/NASTRAN, Proceedings of MSC/NASTRAN
User's Conference, Pasadena, CA, March 1979.



