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ABSTRACT

There are numerous structures that contain nonlinear elastic elements.

Such elements possess nonlinear force~-deflection relationships, yet they are
elastic since they load and unload along the same force-deflection curve.
Representing nonlinear elastic behavior can be accomplished using the pseudo-
force procedure for which the system stiffness matrix remains unchanged, and
the deviations from linearity are treated as additional applied loads. This
approach, utilizing the MSC/NASTRAN NOLIN1 dynamic load in the linear tran-
sient analysis procedure, is computationally no more expensive than is a

comparable, purely linear analysis.

Nonlinear elastic elements are described for actual structures. Then,
the theory behind the pseudoforce technique is briefly discussed. Next,
two large (several hundred degrees-of-freedom) sample problems are presented:
in the first, base motion is applied to a structural system supported by
nonlinear rubber shock isolators; in the second, snapback and high-level
seismic excitations are applied to a piping system supported by nonlinear
hangers. Results from the snapback simulations are compared to experimental
measurements, and inclusion of the nonlinear supports is shown to more ac-
curately reproduce the test data than does an equivalent linear model.
Finally, some comnsiderations are given in regard to modeling techniques and
time step selection for analyzing nonlinear elastic structures via the

pseudoforce approach.



INTRODUCTION

There are numerous structures that contain nonlinear elastic elements.
These elements possess nonlinear force-deflection relationships, yet they
are elastic since they load and unload along the same force~-deflection
curve (and therefore do not exhibit hysteresis). Examples of nonlinear
elastic force-deflection curves are shown in Figure 1. These types of
elements are common in many mechanical and structural systems, including:
piping systems supported by nonlinear springs, chains (stiffness in tension
only), or constant force devices; base-mounted equipment and structure sup-
ported by nonlinear shock isolation systems; structures with gaps (piping
systems and buildings); and soil or concrete structures, which only exhibit
stiffness when in compression. Other systems exhibit nonlinearities that

are proportional to the rate of displacement (such as seat belts and snubber:

Accurate simulation of such nonlinearities is important for accurate
representation of structures containing these nonlinear elastic systems.
" The next section describes several ways in which nonlinear elastic systems
can be modeled in MSC/NASTRAN, with emphasis on the efficient pseudoforce
method. Following that are twovexamples for which the pseudoforce method
was used; the first example represents a 700 degree-of-freedom (DOF) turbine
Structure supported by nonlinear shock isolators, and the second example
represents a 774 DOF piping system supported by bilinear springs. General
discussion of the pseudoforce method is presented at the end of the text.
Concluding the paper is an appendix that presents an extensive validation
of the pseudofqrce method.

METHODS OF SOLUTION

There are several methods in MSC/NASTRAN for solving nonlinear elastic
problems [1,2]*. A general nonlinear solution scheme (SOL 99) could be used,

in which the material properties would be specified as nonlinear elastic

*Numbers in brackets denote references.



Force
Force

Displacement Displacement

a. Bilinear spring b. Preloaded constant force device,
with hard stop

Force
Force

Displacement Displacement

¢. Gap and spring in series d. Stiffness in compression only

Force
Force

Displacement Displacement

e. Softening system f. Hardening system

Figure 1: Examples of Nonlinear Elastic Systems



(NLELAST on the MATS1 card). Nonlinear element stiffness matrices would
be generated, and equilibrium iterations and convergence checks would be
required at each load step. In addition, gap elements (CGAP) could be
used in conjunction with elastic elements to produce systems with piece-
wise linear force-deflection curves. This, too, would require the ad-
ditional computations of nonlinear element stiffness matrix generation,
equilibrium iteration, and convergence testing. Nonlinear analyses
requiring these additional computations can be substantially more costly
than an equivalent linear analysis, even if the nonlinearities are

relatively few in number.

An efficient technique-—-the pseudoforce method=-- exists in MSC/NASTRAN,
in which localized nonlinearities are treated in such a manner as to require
no additional computer time as compared to a purely linear analysis. In
this method, which is available only for transient solutions, deviations
from linearity are treated as additiomal applied loads. The dynamic

equations of motion are written as
MI{x(0)} + [Cl{x(t)} + [R]{x(£)} = {f(t)} + {n(t)} (1)

where [M], [C], and [K] denots the system mass, damping, and stiffness
matrices, respectively. The vectors {£(t)} and {x(t)} denote applied
nodal loads and system displacaments,'respectively, as functions of time.
Time derivatives are demoted by the "." symbol. The vector {n(t)} denotes
the nonlinear forces, which are added to the right-hand side of Eq. 1 (and,
hence, are :reated_as additional applied loads).

Implementation of the pseudoforce method differs among various com-
puter programs. In MSC/NASTRAN, the nonlinear forces are evaluated at the
end of one time step for use in the successive time step. The equations

of motion became

MI{E(E)} + [C]{x(e)} + [R]{x(£)} = {£(r)} + {n(t-at)} | (2)



Note that the nonlinear force lags the true solution by a time step, which
may require use of small integration time steps (smaller than those required

for a purely linear analysis). This is discussed in the appendix.

Equation 2 can be solved in modal or physical coordinates. For all
examples discussed in this paper, direct integration was chosen to avoid
the question of mode truncation that arises in mode superposition; points

made here, however, should apply equally to mode superposition.

The NOLIN1 dynamic load is used to represent the nonlinear force. It
is used in conjunction with a linear elastic element to produce the desired
force-deflection curve, which is illustrated in Figure 2. The NOLIN1 dynamic
force is formulated on a TABLEDIL card, which contains a force-versus-deflec-
tion table describing the nonlinear force. For desired force-deflection
curves more complicated than the bilinear stiffness shown in the figure, the

nonlinear force is made correspondingly more complex.

The appendix presents validation of the pseudoforce method for simple
problems, and also illustrates effects of the integration time step on
solution accuracy. Recent use of the pseudoforce method on large problems

is described in the following sections.

THRUST TURBINE EXAMPLE

A finite element model of two thrust turbines, their common subbase,
and the subbase rubber shock isolators was.formulated using MSC/NASTRAN.
This system is part of the propulsion system of the three-thousand-ton
Surface Effect Ship (3KSES) that was to be built by RMI (formerly Rohr
Marine, Inc.) for the Navy. The objective of the analyses was to perform
structureborne noise decoupling calculations {3] and to perform loads and
motion analysis of the thrust turbines/subbase/subbase support system [4].
The latter analysis is described herein.
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A drawing of one of the turbines mounted on its subbase is shown in
Figure 3. The subbase is mounted on 46 vertical rubber shock isolators
that possess nonlinear elastic force-deflection characteristics. A flex-
ible turbine shaft coupling, located at the aft end of each shaft, was
analyzed to assess its loads and deformation under wave loading of the
ship.

Each turbine was modeled with equivalent beam, spring, and mass
properties, and contained 66 DOF. The subbase, containing 432 DOF, was
modeled with beam elements. The rubber mounts are each hardening systems
with force-deflection characteristics as shown in Figure 4. Each mount
is modeled with a linear spring and a nonlinear force in a manner similar
to that shown in Figure 2. Two constraints were imposed on selection of
mount stiffnesses: (1) the system (turbines plus subbase) must remain
level under gravity loading; and (2) the first vertical frequency, with
the system remaining level, must be either 5 Hz or 7 Hz, depending upon
thch case is analyzed. These constraints give factors that define linear
spring stiffnesses for the subbase regions (see Figure 5) and that define
values of the nonlinear forces. Transfer functions and extra points were
used to define relative displacement between the subbase and hull to

determine the nonlinear force to be applied to the subbase.

Vertical transient motion, which consisted of a decaying expénential
plus a decaying sinusoid, was enforced on the ship's hull. One second of
this motion was analyzed using direct integration with an integration time
step of 0.005 s. Loads in the rubber mounts and relative displacements
and rotations in the flexible shaft coupling were computed. Maximum loads
and relative motions were lower for the stiffer (7 Hz) mounts than for the

softer (5 Hz) mounts.



Figure 3: Turbine/Subbase Layout
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PIPING SYSTEM EXAMPLE

The containment structure and several piping systems of the decom-
missioned Heissdampfreaktor nuclear power plant (near Kahl, West Germany)
were dynamically tested to provide a data base against which to benchmark
analytical models and modeling techniques. Extensive snapback and sine-~
dwell tests were performed on the nonlinear recirculation loop (URL), a
schematic of which is shown in Figure 6. Snapback tests were performed
(5] by: (1) applying a preload at Node 101 (see the figure); (2) allowing
the dynamic transients to decay; (3) quickly releasing the preload; and
(4) monitoring resulting free-vibration piping response. Twenty-four
acceleration time histories were measured for each test. Four snapback
tests were performed, with different preloads and forcing directions.

Two such tests were simulated analytically [6,7]; these were the 80-kN
and 220-kN snaps in the X' direction.

The URL piping system consists of water-filled piping, the reactor
pressure vessel, and two large recirculation pumps. The pipe and reactor
pressure vessel are grounded by fixed points. In addition, the pipe is
supported by four spring hangers, twelve constant force hangers, and
twelve nonlinear swaybraces; Pipe support locations and idealized behavior

are shown in Figures 7 and 8, respectively.

A 774 dynamic DOF finite element model was formulated using MSC/NASTRAN.
All pipe materials were modeled to be linear elastic; the spring hangers
were modeled as linear springs, and the constant force hangers were neglected
in the simulation (due to their exertion of a constant force for displace-
ments within their working range). Swaybrace static force-deflection data
were obtained (8] prior to snapback testing, and are plotted in Figure 9.
Idealized swaybrace behavior for use in the model is shown in Figure 10;
note that the slight measured hysteresis was ignored in the model, allowing
each swaybrace to be modeled as nonlinear elastic. A linear spring (with
stiffness kl) and a NOLINl dynamic load were used to represent each sway-

brace in the manner depicted in Figure 2.
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Prior to simulating the snapback tests, the pseudoforce method was
validated on a single swaybrace to validate the pseudoforce method and

to ensure correct swaybrace representation. Also, proper incorporation
of every nonlinear swaybrace into the model was checked using an effi-
cient piecewise linear analysis algorithm. These are detailed in the
appendix.

Since the pseudoforce method is available only for transient analyses,
the preload was simulated by applying a step load and allowing the dynamic
transients to decay. Then, the load was quickly decreased to zero, result-
ing in subseﬁuent free-vibration response that was simulated for 2.5 s
(using an integration step size of 0.005 8). Multipoint constraints (MPCs)
were utilized to output nodal aécelerations-that corresponded to measurement
directions. These analytical accelerations were written to the PUNCH file
for subsequent postprocessing (plotting and Fourier transforming) in the

same manner as were the test measurements.

Two models were formulated: one was the nonlinear model that repre-
sented each swaybrace with NOLIN1 dynamic loads, and the other was a linear
model that represented each swaybrace with an average, equivalent stiffness
(between kl and kz--see Figure 10). Typical data/nonlinear model/linear
model time and frequency domain comparisons are shown in Figure 11. Peak
acceleration (positive and negative) response comparisons are shown in
Figure 12. The linear and nonlinear models closely matched the test data
for the 80-kN snap, whereas the nonlinear model was much better than the
linear model for the 220-kN snap. Comparison of other responses--general
form and frequency content of the acceleration time histories and swaybrace
force'time histories--showed the nonlinear model to be substantially superior

to the linear model for both snapback simulations.
High-level seismic excitation was also simulated. Transfer functions

and extra points were required (see the appendix) to represent relative

motion of the swaybrace ends. The nonlinear model was compared to a linear
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model that represented all swaybraces as linear springs with stiffness kl'
Element stresses were considerably lower (by 25-75%) for the nonlinear

model.
CONCLUSIONS

The two examples illustrated recent usage of the pseudoforce method
in MSC/NASTRAN for efficiently modeling nonlinear elastic systems. Direct
integration was used to solve the equations of motion, though mode super-
position could have been used as well. The technique was efficient in
that it required no more computer time than did a comparable, .purely
linear analysis. The technique was accurate in that the computed force-
deflection curves matched the desired curves to a reasonable degree (see
the appendix).

As shown in the URL piping example, accurate representation of system
nonlinearities better matches reality than does an equivalent linear model;
it is again emphasized that a more accurate model resulted without incurring
a computational penalty. Additionally, the lower element stresses resulting
from the nonlinear model indicate the potential usefulness of the pseudoforce

method in piping design.
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APPENDIX: VALIDATION OF THE PSEUDOFORCE METHOD

Four validations of the pseudoforce method were performed. Static and
dynamic validations were done, each with a simple and a complex (the 774 DOF
piping system) model.

Static Solution Benchmark--Simple Model

A simple model was chosen to assess accuracy of the pseudoforce method
for nonlinear static problems. The model, shown in Figure A.l, consisted of
a cantilever beam with a nonlinear elastic spring attached to the tip. Also

shown. in the figure are the nonlinear force~deflection characteristics.

The pseudoforce method, as implemented in MSC/NASTRAN, is available only
for dynamic transient analyses. In order to circumvent this restriction for
the static benchmark, the force is applied as a step load, and the static
solution is obtained after the dynamic transients have decayed to negligilbe

levels.
The effective stiffness at the tip, kt’ is given by
kt = ks + kc (A.1)

where ks denotes the spring stiffness, and kc denotes the cantilever stiffness

which is given by

. = 3EL _ (3) (1000) (0.5)

c L3 | (2)3

= 187.5 1b/in. (A.2)

The spring stiffness is given by -

k, = 2000 1b/in. for |A]| < 0.333 in.
kg = k, = 66 1b/in. for [4] < 0.333 in.



2 E = 1000 psi
3 /ﬁ I=s0.5in.%
3 . ~ .
E, I, L k L 2-0 ina
Force
(1b)
666 = ky
kl = 2000 1b/in.
k k, = 66 Lb/in.
ol
0.333 Displacement (in.)
Applied
Load (1b)
1000 =
500
0
3.0 - 8.1 11.4

Time (s)

Figure A.l: Model and Loading for Static Solution Benchmark
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A load of 500 1b was applied to the cantilever tip; MSC/NASTRAN gave a
tip displacement of 0.2280 in. (once the dynamic transients had sufficiently
decayed). Note that this displacement is less than 0.333 in., and the spring
remains in the kl region. Therefore, the exact static displacement is given

by

£ 500

. Tk +k_~ (2000 + 187.5) - 0-2286 in. (4.3)

A=

ta L

to which the MSC/NASTRAN-computed result compares favorably.

The tip load was then increased by 500 1b (to 1000 1b); MSC/NASTRAN gave
a tip displacement of 1.39 in. (after the transients decayed). Note that this
displacement is greater tham 0.333 in. and that the spring should be in the k

2
region. Therefore, the exact static displacement is given by

fn =f -f (£ = 1000 1b)

v b
fb = (ks + kc) (Ab) = (2000 + 187.5) (0.333) = 728.44 1b
fa 271.56
A= Ab + "&m:“r"g: = 0.333 + (66 + 187.5) = 1.40 in. (A.4)

to which the MSC/NASTRAN-computed result compares favorably.

The tip load was then decreased to 500 1lb to verify solution accuracy
upon unloading; MSC/NASTRAN gave a tip displacement of 0.2292 in., which

compares favorably to the exact static displacement of 0.2286 in.
Thus, the pseudoforce method in conjunction with direct integration was
validated for the static response of a simple nonlinear elastic structural

system.

Dynamic Solution Benchmark--Simple Model

A simple model was chosen to assess accuracy of the pseudoforce method
for nonlinear dynamic problems. The model, shown in Figure A.2, consisted of

two truss elements, a single concentrated mass, and two springs (one of which
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was nonlinear). The mass and stiffnesses were selected such that when both
springs are in the kl region (see Figure A.l), the system resonant frequency
is 2.8 Hz; when the nonlinear spring is in the softer k2 region, the system

resonant frequency is 2.0 Hz.

The remainder of the model was chosen to represent each swaybrace as
simulated in the piping system model. In MSC/NASTRAN, the nonlinear forces
are most easily applied in a local coordinate system, which is defined by
Nodes 4 and 5. The two trusses, therefore, connect the local coordinate
system nodes to global coordinate system nodes (represented by Nodes 1 and 2
in the simple model). Each truss is massless, short, and stiff though it is
not too stiff to cause ill-conditioning of the system stiffness matrix. The
first truss grounds Node 4, and the second truss yields the swaybrace force

(l1inear spring force plus nonlinear force).

Snapback tests (see text) were simulated with the simple system. Figure
A.2 shows the applied loading time history; dynamic transients had sifficiently
decayed prior to simulating release of the static preload. Figure A.3 shows
response time histories for the displacement and acceleration at Node 5 and
for the force in Element 5 (equivalent to the swaybrace force). Dynamic
response was calculated using the Newmark-8 method, with an integration time

step of 0.017857 s (giving 20 points per cycle for 2.8-Hz response).

This benchmark illustrates the nature of the pseudoforce method. 1In
reality, this example is one of free-vibration response after release of the
preload, with the system stiffness changing with time. However, in the
pseudoforce method this example becomes one of forced response of a linear
system, with the loading being applied via the nonlinear force. This loading
is such that at high levels of response the 2.8-Hz system vibrates at 2.0 Hz;
thus, the nature of the problem has been changed from free response to forced

response.
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A check was made to assess accuracy of the pseudoforce method for this
simple snapback example. The swaybrace force-versus-displacement curve was
plotted for this example and is shown in Figure A.4a; the desired swaybrace
force-deflection curve is shown in Figure A.Ab,.superimposed over the com-
puted curve. Deviation from the desired curve is apparent, in particular
for forces and displacements outside of the desired kl range. This deviation
results because the true nonlinear force lags the computed response by a time
step. Another simple snapback ekamplé problem was run, this one with an
integration time step of 0.035714 s (double that of the previous example).
Figure A.5 shows the computed force-deflection curve. As expected, deviation
from the desired characteristics is much more pronounced when using the
larger At. Thus, the integration time step is a significant factor--even
more so than iﬁ a purely linear analysis--in obtaining an accurate solution

via the pseudoforce method.

Static Solution Benchmark--Complex Model

As a check on proper incorporation of the twelve swaybraces into the
piping system model, static analyses (obtained by applying a step load and
allowing the dynamic transients to decay) of the nonlinear model using the
pseudoforce method were compared to nonlinear analysis results obtained
using static structural reanalysis algorithms. This was done for both the
80-kN and 220-kN X' snapback loads which were applied to the piping system.

Structural reanalysis involves resolving a system of equations for a
structure that has been locally modified. The reanalysis procedure solves
a problem of much lower order than the original problem and, hence, is
computationally much more efficient for locally modified structures than is
complete reformulation and redecomposition. In essence, the structural re-

analysis problem is stated as follows

given [K] {x} = {£}, [K] = [L][D][L]T, and [aK]
solve [K+AK] {x+Ax} = {f}

(A.5)
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Note that [4K], the modification to the system stiffness matrix, cannot be
such that the sum [K+AK] becomes a singular matrix. Also, whereas [AK] may
contain relatively few (when compared to [K]) nonzero entries, each entry
may have a large magnitude; hence, the corresponding changes to the solution

vector, {4x}, may also be large.

Many efficient algorithms have been proposed to solve Eq. A.5 (see Refs.
A.l and A.2 for a comprehensive review of the different structural reanalysis
techniques). For the piping system project, the Sherman-Morrisom algorithm
[A.3]* was used, which--for the type of structural modifications analyzed in
the piping system--reduced to the pseudoforce method for structural reanalysis
[A.4].

The Sherman-Morrison identity, stated here without proof, is
(x + Bcp] ™t = k17 - (x17h eyt ¢ ox7lept (o) xg (A.6)

where [K] is the original matrix (of dimension n x n), and the product [BCD]
represents the modified matrix (or, [AK]) Note that [C] cannot be singular,
nor can [C + DK~ B]

For structural reanalysis, [K] is the system stiffness matrix, and [BCD]
is the modified stiffness matrix; both [K] and [BCD] are in global coordinates.
To make the algorithm efficient, the size of [C]--and, hence, [C-l + DK-IB]-—
should be as small as possible. To accomplish this, [C] should be of dimension
D X m, where m represents the number of locally modified degrees-of-freedom .
(and, as such, m<<n). Then, since [AK] is symmetric for structural analysis,
[B] and [D] are the transposes of each other, If [C] is in global coordinates,
[B] and (D] are Boolean matrices (ones and zeroes) that properly expand [AK]
from size m x m to size n x n. If [C] is in local coordinates, a rotation
matrix is also incorporated into [B] and [D]. For the piping system, the size
of [C] is 12 x 12 (as compared to the size of [K], which is 774 x 774); [C] is
a diagonal matrix representing (at most) 12 stiffness changes. The matrices
[B] and [D], therefore, are simply Boolean matrices, since [C] is in global

coordinates.

*Numbers in brackets denote references.
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As shown in Eq. A.6, the global stiffness matrix inverse can be
modified. However, since the original inverse was never explicitly com-
puted, only the updated solution vector was sought. This is accomplished
by post-multiplying Eq. A.6 by the applied load vector, {f}, .as follows

[k + Bcn]'1 {£} = [K]-l{f} - [K]'1 [B] [c"l + DK-]'B]-]'[D] [K]'l{f} (A.7)

or, since [K]{x} = {f}

{x + 8x} = {x} - [k]7}(B]c™? + Dk™1B] ™ (D] (x} (A.8)

The solution vector {x} (and, thus, {x + Ax}) chosen for the piping system
is the vector of displacements of the swaybraces; since each swaybrace force
is proportional to its displacement, the swaybrace forces are updated at
each step--reanalysis plus application of each load increment--until all of
the load has been applied.

A computer program was written to automatically increment the load at
Node 101 X' (see figure in text) until a swaybrace changed stiffness from
kl to kz, and then to perform subsequent reanalysis to reflect the revised
stiffness. This process was repeated until all of the 80-kN or 220-kN X'
load was applied. Table A.l depicts this process: shown is each load
increment and the swaybraces which have changed to stiffness kZ' As seen
from the table, nine of the twelve swaybraces were computed to have been
in the k2 stiffness region for application of the 80-kN load at Note 101 X'

for the 220-kN load, one additiomal swaybrace was in the kz stiffness region.

Swaybrace forces were computed by performing MSC/NASTRAN dynamic pseudo-
- force analyses for the 80-kN and 220-kN applied loads. Table A.2 presents

a comparison between MSC/NASTRAN-computed and reanalysis-computed swaybrace
forces. Both computations agree, which is further validation of the dyanmic
pseudoforce method in general, and which is verification that the nonlinear
swaybraces were correctly incorporated into the piping system model, in
particular. Note that the dynamic pseudoforce method and nonlinear swaybrace

modeling were verified by using a linear model in a plecewise linear fashion

A~-11



TABLE A.l:

PROGRESSION OF REANALYSIS PROCEDURE

Load Cumnlative Swaybraces with
Increment (N) Load (N) Stiffness kz

11,547 11,647 e

7,305 18,952 4

1,204 20,156 4,14

5,170 25,326 4.8,14

19,175 44,501 4,.8,13,14

2,194 46,695 4.8,9,13,14

5,498 52,193 3,4.8,9.13,14

70 52,263 2,3,4.8,9,13,14

17,360 69,623 2,3,4,7,8,9,13,14

10,377 80,000 2.3,4.6,7,8,9,13,14
122,797 202,797 2.,3,4,6,7,8,9,13,14

17,203 220,000 2,3,4,6,7,8,9.11,13,14

TABLE A.2: STRUCTURAL REANALYSIS AND DYNAMIC PSEUDOFORCE COMPARISON

i 115 97 -2678 -2701
2 2795 2827 3319 3482
3 -2797 ~2829 -3298 -344]
4 3194 3313 4259 4616
5 1879 1849 1091 1144
6 2717 2746 3177 3372
7 ~2751 ~2774 -3278 -3389
8 3173 3228 4122 4476
9 -21273 ~2739 2848 -2889
11 -97 -115 -2708 -2722
13 2900 2957 3480 3671
14 2871 2919 3317 3463
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to obtain the final results. The piecewise linear analysis could have been
done with the linear MSC/NASTRAN model, though it would have required 11

Separate computer runs, one for each piecewise linear incremental analysis.
The reanalysis technique performed the same analyses, though in a much more

efficient manner.

Dynamic Solution Benchmark--Complex Model

After the pseudoforce method was validated on simple problems, and
after proper incorporation of the nonlinear swaybraces into the piping
system model was verified, the 80-kN and 220-kN X' snapback tests were sim-
ulated. Validity of the computer-generated results is dependent upon the
ability of the-MSC/NASTRAN—implemented pseudoforce method to accurately

simulate the desired nonlinear swaybrace force deflection characteristics.

Selected force-deflection curves for the 80- and 220-kN X' snapback
simulations are shown in Figures A.6 and A.7. Figure A.8 shows similar
plots with the désired force-deflection curve superimposed on each analyt-~
ical curve. Note that the 80-kN simulation curves appear to follow the
desired curve much better than do the 220-kN simulation curves. In fact,
curves from the 220-kN simulation appear to exhibit significant hysteresis,
even though the nonlinear\swaybracés should be elastic. This hysteresis
adds localized damping to the system, though it is probably an insignificant

amount compared to the overall system damping.

The integration time step, At, is 0.005 s for both simulations. The
220-kN simulation was repeated with a time step of 0.0025 s; the force-
deflection curves and acceleration peak values scarcely changed. Figure A.9
shows force-deflection curves for the two time steps. There were negligible
acceleration changes from halving the time step, though force time histories
did show significant differences. This is depicted in Figure A.10, which

shows typical swaybrace force time histories for the two simulations; note
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the response spike for the larger integration time step. This is due to
the nonlinear force lagging the solution by an integration time step;
this lag is more pronounced for the larger At. This decreased accuracy
with increased At was also shown for the single degree-of-freedom system

described earlier.

Swaybrace force-deflection curves were also computed for the seismic
simulation. Since the grounded end of each swaybrace was stationary in
the snapback simulations, each nonlinear force was calculated in terms of
the absolute displacement of the unrestrained end of each swaybrace. This
had to be changed for seismic excitation, since the grounded end of each
swaybrace would undergo enforced motion. Therefore, relative displacement
between the ends of each swaybrace was required, which necessitated the
use of transfer functions and extra points. Representation of a single
swaybrace with enforced motion at one end is shown in Figure A.1ll. The
large-amplitude earthquake simulation was performed using direct integration
with a time step of 0.005 s (the same as was used in the snapback simulations).
Typical’swaybrace force-deflection curves are shown in Figure A.12. Whereas
these curves are not as accurate as those of the 80-kN snapback simulation,
they are, nonetheless, better than the 220-kN snapback simulation curves.
Particularly noticeable is the lack of apparent hysteresis, which--while
perhaps not so important for the snapback simulations--is importaﬁt for the

seismic calculations.
Conclusions

This appendix described validation of the pseudoforce method and veri-
fication of proper nonlinear swaybrace incorporation into the piping system
model. The integration time step was shown to be an important consideration
in the pseudoforce method as implemented in MSC/NASTRAN. Further research
is needed to formulate g-priori guidelines for integration step size as a
function of system resonant frequencies, severity of nonlinearties, and

type of applied loading.
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