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ABSTRACT

This paper describes an efficient method for finite element
modeling of structures containing a viscoelastic material. Modal
damping ratios are estimated from undamped normal mode results
by means of the modal strain energy (MSE) method. Comparisons
are given between results obtained by the MSE method implemented
in MSC/NASTRAN, by various exact solutions for approximate
governing differential equations, and by experiment. Results
are in terms of frequencies, modal damping ratios, and mechanical
admittances for simple beams, plates, and rings, as well as for
an actual hardware application. Use of the finite element/MSE
method in design of integrally damped structures is discussed.



PREDICTION OF DAMPING IN STRUCTURES
WITH VISCOELASTIC MATERIALS

1.0. INTRODUCTION

Increasing the damping of a structure can often improve
performance under dynamic 1load. A rational design process
requires a method for predicting the damping values that can be
expected for a given structural configuration. However, the
prediction of damping has historically been largely an art, or
at best, a specialized science requiring a greater investment of
time and effort than is practical within most design projects.

Predictions of dynamic response in finite element analysis
are most often made by the simple expedient of choosing a single
structural loss factor to characterize all modes of vibration
or, at most, assigning loss factors based on the natural
frequency of each mode. The values themselves are obtained
emperically or are otherwise based on the judgement and
experience of the user. Uncertainties in loss factor are simply
ignored or are accounted for by running the analyses for a range
of values. ‘

This approach is probably reasonable for situations where
the damping is accidental, i.e. due to mechanisms not under the
control of the designer. Phenomena such as hysteretic losses in
metals, air pumping and friction in joints, or acoustic
radiation invariably lead to some measurable amount of damping.
However, it is often too little and too unpredictable to produce
a satisfactory design. In these cases the addition of damping
by the wuse of viscoelastic materials can be highly effective.
Damping-by-design has proven valuable in many applications,
particularly in the aerospace industry. Methods have recently
been developed for predicting damping in structures with
integral or add-on viscoelastic treatments.

Several mathematical techniques for dynamic analysis of
Structures containing viscoelastic materials (v.e.m.'s) have
been implemented using finite elements. All make use of the
correspondence principal of viscoelasticity. That 1is, the
Young's modulus and shear modulus of the v.e.m. are treated as
complex quantities. The ratio of the imaginary part to the real
part is called the loss factor or loss tangent and is a measure
of the materials ability to dissipate vibrational energy.

One technique in particular, the modal strain energy (MSE)
method, has been developed by the authors with design work in
mind. It has proven to be accurate and flexible in both



theoretical studies and practical applications. This paper is
an overview of the authors' work over the last several years in
developing and using the method.

Layered dampers have played an important role as test cases
in developing the MSE method. This parallels their practical
importance where they have historically been one of the most
weight-effective methods of using v.e.m.'s. A constrained layer
damper is formed by sandwiching a thin layer of v.e.m. between
two metal or composite face sheets. Bending of the sandwich
then causes shearing strain in the core which dissipates the
energy of vibration. -

Since much of the difficulty of analyzing damping in
Structures stems from complicated geometries, it is natural to
look to finite element methods for solutions, just as they are
used for analysis of general undamped structures. In this
paper, several approaches to damped structural design are
examined in the context of implementation by MSC/NASTRAN. A
modeling method suitable for three layer sandwiches and other
configurations is described and details of 1its use are
discussed.

Three methods are reviewed for forming and solving the
equations of motion for structures with viscoelastic materials.
Details of modeling layered structures with MSC/NASTRAN are
discussed as well as solution methods. The MSE method is
described in terms of examples where results are compared to
known solutions. Finally, a case history is described and
directions of ongoing work are discussed.

2.0 DISCRETIZED EQUATIONS OF MOTION

Three distinct decisions must be made in arriving at
response predictions for a structure containing viscoelastic
materials:

-- What form should the discretized equations of motion take?

-- What type of elements should be used in modeling the
structure? .

== How should the equations of motion be solved?



Current methods for finite element analysis of damped
structures can generally be placed in one of three categories
depending on how the first of these questions is answered. The
three methods are briefly described in this section along with
the advantages and disadvantages of each for design purposes.

All three of the methods use, to some extent, the idea of
treating the elastic constants of a viscoelastic material as
complex quantities. This very useful notion is often
misunderstood. It derives simply from the wuse of complex
arithmetic to keep track of relative phase between stress and
strain under deformations that vary sinusoidally in time. The
idea is obviously extendable to non-sinusoidal motion for linear
systems by the use of Fourier transform theory to represent
arbitrary time histories as sums of sinusoids. Crandall [1,5]
has shown that the notation can, if taken too literally, lead to
implications that are physically impossible. The point is a
subtle one and is mentioned here only in passing.

2.1 Complex Eigenvalue Method

Suppose the discretized equations of motion take one of the
following two forms

(MI{x} + [CI{x} + [KI{x} = {1(t)} (1)
or
[MI{X} + [K11{x} + i[K2]{x} = {1(t)} (2)
where
(M],(C],[K] = physical coordinate mass, damping
and stiffness matrices (all real and
constant)

[K11,[K2] = real and imaginary parts of the
stiffness matrix calculated with
complex material constants

{x},{x},{X} = vectors of nodal displacements,
velocities, and accelerations
{1} = vector of applied node loads

The solution for either form of the equations of motion can
be carried out in terms of damped normal modes [2-3]. Both the



eigenvalues and eigenvectors will in general be complex but the
method 1is nonetheless quite standard in that the modes obey an
orthogonality condition and thus allow wuncoupled equations of
motion to be obtained.

The complex eigenvalue method has three important
drawbacks. It is computationlly expensive; typically three
times the cost of an undamped solution of the same order [U4].
In MSC/NASTRAN, one also does not have the same sophisticated
spill logic as for real eigenvalue analysis and thus the maximum
problem size is smaller. Finally, for a structure to be
described by Eq. (1) or (2), its materials, including any
viscoelastics, must have dynamic stress-strain behavior of a
certain type. Eq. (2) implies that both storage and 1loss
moduli are constant. Eq. (1) requires that storage moduli be
constant and loss moduli increase linearly with frequency [51].
Real viscoelastic materials simply do not behave in such
accommodating ways. Storage modul i tend to increase
monotonically while loss moduli exhibit a single, mild peak [6].

2.2 Direct Frequency Response Method

If the applied load varies sinusoidally in time, energy
dissipation in the structure can be accounted for by treating
the elastic constants of any or all of the materials as complex
quantities which are functions of frequency and temperature.
These material properties are presumably available from
Sinusoidal tests. If the structure is linear, its response will
be sinusoidal with frequency equal to the driving frequency, and
the steady-state equations of motion will have the form:

2

[-M® + K (@) + iKy(w)] X(w) = L(w) (3)

where

Ky (@), Ky (w)

stiffness matrices calculated using the

real and imaginary parts of the material
properties, respectively

w

L(W) ’ x(“)

radian frequency of excitation

complex amplitude vectors of applied
node loads and responses, respectively

i = /27



There are several drawbacks to the direct frequency
response (DFR) method. It is computationally expensive because
a general sinusoidal solution requires thatt the displacement
impedance matrix (the bracketed quantity in Eq. (3)) be
re-calculated, decomposed, and stored at each of many
frequencies. Further, the method does not give information of
direct use in improving a candidate design.

The costliness of the direct frequency response method
indicated by Eq. (3) is a direct result of the restriction to
physical coordinates (as opposed to modal coordinates). This
restriction 1is caused by the form of the corresponding time
domain representation. General convolution integral relations
between forces and displacements must be admitted in order to
accommodate the variation of [K1] and [K2] with frequency that
is observed in real viscoelastic materials. Since not even the
form, 1let alone the parameter values, of the convolution
relation is generally known, it must be represented numerically
in the frequency domain in terms of its Fourier transform. A
tabular frequency representation can be arbitrarily accurate as
long as the underlying stress-strain operator is linear.
However, ' the use of such a data format is costly, particularly
if a high level of frequency resolution is required.

The most reasonable application of the DFR method in design
work "~ is in making final predictions of frequency response after
the materials and geometry of the damping treatment have been
selected wusing the modal strain energy method. The ability to
account exactly for the frequency dependence of material
properties will generally yield some improvement .in accuracy
over the MSE method. This may justify its higher cost if only a
small number of functions with moderate frequency resolution are
required,

Direct frequency response analysis is possible in
MSC/NASTRAN as explained in section 2.11-2 of the Applications
Manual. A frequency-dependent complex shear modulus may be
specified in terms of tables. These are prepared in a
particular format to include both frequency dependent damping
for each element material as well as additional damping which is
constant with frequency.

2.3 Modal Strain Energy Method

The modal strain energy method is an approximation to the more
expensive complex eigenvalue method. It has been developed by
the authors with the intent of producing a tool which is
accurate, flexible, and yet wusable in day-to-day design
analysis.



The essence of the method is that it does not attempt to
calculate the damping matrix [C] of Eq. (1) nor the imaginary
stiffness [K2] of Eq. (2). Rather, it avoids the wuse of
complex matrices entirely by assuming that the real mode shapes
obtained by suppressing the term [Cl{x} in Eq. (1) or (K2]{x}
in Eq. (2) are approximations to the true complex mode shapes.
This leads to a simple approximate formula for calculating
structural 1loss factor for each mode based on its shape [7].
Comparisons with true complex eigenvalue solutions, both
differential and finite element, have shown the approximation to
be reasonable even for values of material loss factor in excess
of wunity [7,81]. The damped structure is thus represented in
terms of its undamped mode shapes with appropriate damping terms
inserted into the uncoupled modal equations of motion. That is:

@, + "(r)“rar+ mgar = ¢ (%) (4)
(5)

X

I sta ()

r=1,2,3...

@&, = r'th modal coordinate
w, = natural radian frequency of the r'th mode
#(r) = r'th mode shape vector of the associated
undamped system
n{r) = 1oss factor of the r'th mode

It is implied that the physical coordinate damping matrix
[C] of Eq. (1) need not be explicitly calculated but that it
can be diagonalized, at least approximately, by the same real
modal matrix that diagonalizes [K] and [M].

The modal loss factors are calculated by using the undamped
mode shapes and the material 1loss factor for each material.
This general approach was first suggested by Ungar and Kerwin
(9] in 1962. Its application by finite element methods was
first suggested by Rogers [8]. The material loss factor of the
metal face sheets of a sandwich structure is very small compared
to that of the viscoelastic core. In this situation the modal
loss factor is found. from [7]



v(")
v

(r) _ (6)

S I )

where

n = material loss faétor of viscoelastic core evaluated
v at the r'th calculated resonant frequency

vir)

W%MTW = fraction of elastic strain energy attributable to
AL the sandwich core when the structure deforms in

the r'th mode shape

The calculation of the modal energy distributions fits
quite naturally within finite element methods and is a standard
option. in MSC/NASTRAN. The basic advantages of the method are
that only undamped normal modes need be calculated and that the
energy distributions are of direct use to the designer. They
lead to an optimum choice of viscoelastic material as well as
the optimum location for it. The disadvantage is that some
- approximation is required to accommodate frequency-dependent

material properties.

3.0 FINITE ELEMENT ANALYSIS OF THREE LAYER SANDWICHES
3.1 Choice of Elements

Regardless of the solution method to be employed, modeling
of sandwich structures requires that the strain energy due to
shearing of the core be accurately represented. To be
practical, a modeling method must do this without incurring an
unacceptable increase in computation cost relative to a uniform,
single layer model. A modeling method is described in this
section which is reasonably efficient and has the important
advantage of being readily implemented with MSC/NASTRAN.

Figure 1 shows the arrangement for modeling of a three
layer sandwich. The face sheets are modeled with quadrilateral
or triangular plate elements producing stiffness at two
rotational and three translational degrees of freedom per node.
The viscoelastic core is modeled with solid elements producing
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stiffness at three translational degrees of freedom per node.
All nodes are at element corners. The plate elements used are
TRIA3's, TRIA6's, QUAD4's, and QUAD8's, and the solid elements
are PENTA's and HEXA's. A key feature of the plate elements in
the present application is their ability to account for coupling
between stretching and bending deformations [10]. This allows
the plate nodes to be offset to one surface of the plate,
coincident with the corner nodes of the adjoining solid
elements. In this way a three layer plate can be modeled with
only two layers of nodes. The technique 1is explained in the
Applications Manual under the TRIA3 and QUADY elements.
Alternately, one may use the PCOMP property card normally
employed for 1layered composites. A two-layer composite is
defined but with a near-zero modulus specified for one layer.
The other layer then represents the offset plate element.

Very large aspect ratios (in-plane dimension/thickness
dimension) may be used for the solid elements in the core layer
because the strain field is usually quite simple. Values as
high as 5000/1 have been used successfully and are in fact
necessary since core layers are often only a few mils thick.
Poisson's ratio for the core material is taken as 0.49 for all
examples described here.

3.2 Reduction of Equations of Motion

In all but the smallest problems, some form of dynamic
reduction must be employed to reduce the number of
degrees-of-freedom in the analysis. Either Guyan reduction or
generalized dynamic reduction may be used. In Guyan reduction,
the d.o.f. to be retained are selected by the user prior to
calculation of eigenvalues. As usual in vibration analysis,
some care is warranted in this selection. Some displacements
should be retained for both face sheets, although it is not
necessary to keep both upper and lower face displacements at any
single in-plane location on the model. This result is somewhat
surprising in that virtually all sandwich panel theories assume
the transverse displacments of the face sheets to be equal. If
out-of-plane displacements of only one face sheet are kept, the
results for natural frequency as well as core-to-total energy
ratio show a pronounced dependence on the Poisson's ratio of the
core. Although such a dependence is real for some cases, such
as doubly curved shells, it should not occur for simpler cases
such as straight sandwich beams--and in fact does not occur if
the rule given above is observed in performing the reduction.



3.3 Solution Method

Once the model 1is assembled, either direct frequency
response or modal strain energy analysis can be performed. In
the latter, a standard normal mode extraction run is made with
all material constants treated as real and constant. The
elastic strain energy in each element for each mode is
calculated as well as the energy fraction in the viscoelastic
core for each mode. These fractions multiplied by the core
material loss factor give the modal loss factors which are input
via a damping vs. frequency table for use in subsequent forced
response calculations.

When the modal strain energy method (or any normal mode
method) is used, the modal properties are obtained from system
matrices which are assumed to be constant. Viscoelastic
materials, however, have storage moduli which vary significantly
with frequency. There 1is no theoretically correct way of
resolving this contridiction. Nonetheless, normal mode methods
have great practical advantages, both for making response
predictions and for suggesting design improvements. Real normal
modes, uncoupled but with damping, have been found to be
reasonably accurate if a simple correction is made to the modal
loss factors obtained by Eq. (6). The correction is obtained
as follows.

For broadband excitation, most of the response of a given
mode occurs within a narrow band around the mode's natural
frequency. It is natural then to require that the energy
distribution used to compute the loss factor for a given mode be
obtained wusing a stiffness matrix evaluated for material
properties taken at that mode's frequency. Because the natural
frequencies themselves depend on material properties, an
iterative solution of two simultaneous relations (the eigenvalue
problem for each mode number and the material property vs.
frequency relation) is required. The procedure is not difficult
and is explained in Ref [8]. However, a further problem
remains. The final modal coordinate representation of the
structure must come from a single stiffness matrix evaluated
using a single value of storage modulus for the core material.
Natural frequencies, mode shapes, and modal masses will be
correct for, at most, one mode. A further correction of the
modal loss factor has been found to give some improvement.

Each modal equation of motion has the form given in Eq.
(4). At resonance the first and last terms on the left cancel
each other. The response magnitude is inversely proportional to
the product rérﬁmr.which is the coefficient of the modal
velocity. If n r) is altered to correct for the error in W, , an
improvement 1in peak response may be expected although resonance



will still occur at a slightly shifted frequency and some small
error will remain due to &. which depends on modal mass. 1In
test cases run for sandwich beams [8], it was found that
taking w, to be proportional to the square root of G2 (G2 =
core shear modulus) would improve the agreement between the MSE
method and the direct frequency response method. This is of
course an approximation since w. depends on properties of the
face sheets as well as the core. The modal damping ratios are
adjusted according to

. ' (1)
Ar)t o (r) Go(f,)
2,ref
where
alr)' = adjusted modal damping ratio for the r'th mode
n(r) = modal damping ratio for the r'th mode obtained by
iteration
Gy ref = core shear modulus used in final normal modes
! calculation to obtain modal frequencies, shapes,
and masses
Go(fr) = core shear modulus at f = f. where f_ is

r'th mode frequency calculated with G2 = G2, ref

4.0 EXAMPLES

The modal strain energy method implemented in MSC/NASTRAN
has been applied to a number of simple structural elements for
which other solutions are available. Tests cases for sandwich
beams, rings, and plates are described in this section.

4.1 Sandwich Beams

Sandwich beams have been analyzed by a number of authors.
DiTaranto [11] derived a sixth order differential equation for
vibration of a general three-layer beanm. Rao [12] obtained
complex eigenvalue solutions of this equation for a complex
shear modulus of the core with various boundary conditions. It
is convenient to use these results as test cases in that the
complex eigenvalue solution yields modal loss factors whiech can
be compared directly to those obtained by the MSE method. The
assumptions of the sixth order derivation are consistent with



those of the finite element model except, in the differential
analysis, the rotations and out-of-plane displacements of the
upper and lower face sheets are taken to be equal. This is
quite reasonable for a thin core layer which tightly couples the
face sheets.

A second, more widely known analytical solution 1is also
available for three-layer beams [13]. It is based on the usual
fourth order differential equation for flexural vibration of a
uniform beam but with the sandwich construction accounted for in
terms of an equivalent complex bending stiffness. Core shear is
not explicitly retained as a dependent variable and therefore
cannot be prescribed at boundaries. Mode shapes are simply
assumed to be sinusoidal and general boundary conditions are not
considered.

Figure 2 shows a comparison between results for a
cantilever sandwich beam as obtained from sixth order theory,
fourth order theory, and the MSE method using a NASTRAN model
having 20 elements in the lengthwise direction. The 17.78 cm (7
in.) long cantilever beam has equal aluminum face sheets 1.52 mm
(0.060 in.) thick, and a viscoelastic core 0.127 mm (0.005 in.)
thick. - Results are given in terms of loss parameter (composite
loss factor normalized on the material loss factor of the core)
and in terms of natural frequency for each of the first four
modes. The loss parameter is obtained from the finite element
MSE results simply as the ratio of core-to-total elastic strain
energies (Eq. 6) and thus does not require specification of
core material loss factor. The quantity n, is also
called n, in Eq.(6).

The shear parameter g, shown as the abscissa in Figure 2,
is a normalized shear modulus for the core material. It is a
real quantity defined by:

2 2

c* A, L2 (EyAy + Bghs) - (8)
8= Tr+Tny) t5 E1A1E3 3




Go* = complex shear modulus of core material
n2 = loss modulus of core material (n,)

Ao = cross-sectional area of core

to = thickness of core

L = beam lehgth
Ey, E3' elastic moduli of face sheets

Ay, A3 = cross-sectional area of face sheets

The quantity g(l+jn,) occurs as a coefficient in the
nondimensional sixth order differential equation of motion [12].

A value of core material 1loss factor much smaller than
unity ( n, =0.01) was used in obtaining the fourth and sixth
order results of Figure 2. Figure 3 illustrates the effect of
core material 1loss factor on composite 1loss factor for the
fairly high values of n, which one would wish to use in
practice. It may be seen that n 1increases almost linearly
with n, . The MSE theorem implies an exactly linear
relationship which is close enough for most practical purposes.
Figure 4 illustrates a test case where results obtained by the
MSE and DFR methods are compared for the case of the sandwich
cantilever beam of Figure 2. The dashed curve was obtained by
the direct frequency response method using constant material
properties. The solid line was calculated using the first six
modes with modal damping ratios obtained via the modal strain
energy method (Eq. (6)). A fairly high value of material 1loss
factor was wused in both methods. It may be seen that the
difference is quite small even in the neighborhood of resonance.

Figure 5 shows the strain energy distribution in the
cantilever beam of Figure 2 for various values of core shear
modulus. In this case, both the top and bottom face sheets are
restrained at the root of the beam and, therefore, the core
shearing strain is zero at this 1location. A plot of strain
energy distribution is very helpful to the designer since it
indicates where the energy dissipation 1is occurring for each
mode and thus where the viscoelastic is doing some good.

A comparison of results from the MSE method and the complex
eigenvalue method (constant complex stiffness), both implemented
in MSC/NASTRAN, is shown in Table 1 for the beam geometry of
Figure 2 and a cgre shear stiffness of .623 MPa (65 psi). It
indicates that nfT and N, are almost exactly proportional
over a wide range of‘nv and agree quite well with MSE results.
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by direct and modal strain energy methods.
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Computation cost for eigenvalue extraction in the complex
stiffness, complex eigenvalue method was found to be about 5
times greater than for real eigenvalue extraction in the
corresponding MSE run. The Hessenberg method was used in the
former and the Givens method in the latter.

TABLE 1
COMPARISON OF LOSS PARAMETER FOR A SANDWICH BEAM
CALCULATED BY THE MODAL STRAIN ENERGY AND
COMPLEX STIFFNESS EIGENVALUE METHODS

MSE CE
1 1B - 0.214 0.216 0.210
2 2B 0.280 0.287 0.276
3 1T 0.025 0.025 0.025
y ‘3B 0.213 0.223 0.218
5 4B 0.134 0.142 0.141
6 2T 0.026 0.026 0.026
7 5B 0.081 0.093 0.092
8 3T 0.031 0.031 0.031
9 6B 0.057 0.062 0.062

Similar calculations were made for a variety of beam
section geometries and boundary conditions with similar results.
The sixth order and MSC/NASTRAN results for damping and
frequencies were, for practical purposes, 1identical for the
first six modes. Results from the fourth order theory differed
somewhat for certain boundary conditions as would be expected
based on the assumptions of the theory.

4,2 Sandwich Rings

The modal strain energy method has been applied to several
sandwich ring configurations for which Lu, et al. [14] have
given a closed form solution for frequency response. Since the
NASTRAN QUAD4's and HEXA elements are both capable of modeling
curved. surfaces, there is no basic difference in method between
beams and rings. Some loss of accuracy could probably be
expected at small radius/thickness ratios although this was not
investigated.

Figure 6 gives the dimensions and material properties for
specimen 1 of Ref. [14]. It may be noted that the
viscoelastic material properties vary significantly over the
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50-5000 Hz analysis band.

Finite element results obtained by three methods are shown
in Figure T7:

(1) the direct frequency response method (Eq. (3)) which
accounts exactly for material property variation with
frequency :

(2) the modal strain energy method with constant material
properties which allows for no variation

(3) the modal strain energy method with adjusted damping
ratios which allows an approximate accounting for property
variations '

The agreement between the direct frequency response and adjusted
MSE methods is quite good. It is significant because the MSE
method is substantially cheaper and is more readily used in the
design process. The simple correction applied to damping ratios
is adequate, at least in this case, to account for the frequency
dependence of core material properties.

A comparison between finite element/MSE results and the
closed form solution of Lu, et al can be made directly in terms
of natural frequencies and modal loss factors. The loss factors
are obtained from the admittance funtion by the usual half power
bandwidth method. That is

(r) _Tr - %% (9)
L S
r
where

n(r) = loss factor of r'th mode

fr = resonant frequency of r'th mode

] "

fr' fr = frequencies slightly above and below f£f_  at which

the magnitude of the admittance functibn is
reduced by 3 dB
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Loss factors are obtained from the undamped finite element
results by (Eq. (6)) as usual. A comparison is given in Table
2 for the ring geometry shown in Figure 6. Both solutions are
for a hypothetical case of constant core material properties

(G2 = 83.9 MPa (12164.0 psi), n, = 0.5420).
_ TABLE 2 ,
NATURAL FREQUENCIES AND MODAL LOSS FACTORS
FOR A DAMPED SANDWICH RING
ANALYTICAL SOLUTION
(Iu, et al.[14]) NASTRAN/MSE

Frequency Loss Frequency, Loss
Mode (Ez) Factor (Hz) Pactor
1 660.7 .0946 649.2 .0974
2 1752.0 .0446 1746.8 .0501
3 }289.8 .0271 3307.1 .0320

4.3 Sandwich Plate

The closed form solution of Abdulhadi [15] for natural
frequencies and modal 1loss factors of rectangular sandwich
plates has been employed as a test case. The formulation in

Ref. [15] is valid for a simply supported plate with core shear
unrestrained at the plate edges.

Figure 8 shows a comparison of modal loss factor as a
function of shear parameter as calculated by the closed form
solution and by the modal strain energy method using
MSC/NASTRAN. A grid of twelve elements in each in-plane
direction was used. The dimensionless format of the plots 1is
similar to that of Figure 2 for beams. The dimensionless
parameters for a three layer plate are
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core material loss factor
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where

T,,T thicknesses of the face sheets
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thickness of the core layer

3
N
it

G = real part of the complex shear modulus
[U(1+inv)] of the viscoelastic material

1,E3 = Young's moduli of the face sheets

»
o
"

~in-plane dimensions of the plate

(=]
"

Sum of the flexural stiffnesses of the upper and
lower face sheets, each about its own center plane

v = Poisson's ratio of the face sheets

Figure 8 shows that the closed form solution and the modal
strain energy method agree closely for small values of the
material loss factor. Some divergence is seen for larger
values, on the order of unity or greater. The agreement also
depends on the value of the shear parameter g. It is best for g
equal to or 1less than the value giving highest damping.



Fortunately, most practical constrained layer treatments tend to
fall in this range [16].

5.0 DESIGN OF DAMPED STRUCTURES

Figures 9 shows a simplified flow chart of the logic that
might be wused in designing a viscoelastically damped structure
using MSC/NASTRAN. The initial design effort (upper 1left part
of Figure 9) is wusually concerned with basic issues such as
static stiffness, strength, and insuring that the normal modes
of wvibration will be acceptable, once adequate damping is
obtained. When these issues are settled, the model is modified
to account for additive damping, either in the form of damping
inserts or add-on layered dampers. The geometry and material
properties of the treatment are selected by an iterative process
using the results of a modal strain energy analysis to guide
each succeeding trial.

Once the engineer believes his damped design is close to
optimum, he performs his final response calculations with
NASTRAN using either the adjusted MSE method or the DFR method.
These simulations are based on the best available estimate of
the in-service dynamic load. The choice of method would depend
on the type of load (transient, periodic, or random), the number
of load cases, the frequency range, the properties of the
viscoelastic, and the required accuracy.

5.1 Case Study

Figure 10 shows a structural part for which an add-on
damping treatment was designed by the modal strain energy
method. The part is an annular hollow plate which forms a
divider between two modules of a high energy laser. The plate
has many internal passages which carry coolant at high veloecity.
Gas wunder pressure flows radially outward from the hub and
exhausts through the cavity between the lips at the outer
" circumference of the plate. Calculations indicated that
unstable flow induced vibration, or flutter, could occur in the

lips of the plate if the damping of certain modes was below a
critical value.

The plate was tested in its original undamped form and the
damping was found to be well below the desired value. The
authors were asked to design a damping treatment subject to the
following requirements:

(1) The damping of the critical mode had to be increased to at
least 1.0% (structural).
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(2) Static stiffness at the plate rim in the axial direction
could be increased by no more than 10%.

(3) The damping treatment had to be effective over a
temperature range of 75 deg F. to 400 deg F. and was to
withstand short term exposure to 650 deg F.

(4) The treatment had to be designed, fabricated, and applied
within a few weeks with no major machining of the original
plate.’

Based on these requirements, it was decided that a viscoelastic
insert installed between the 1lips of the plate was the most
desirable approach. The insert was to take the form of an
O-ring which would be forced into the space between the lips of
the plate around its entire circumference. The design was later
changed to include several O-rings as shown in Figure 10.

One of the finite element models used in the design process
is shown 1in cross section in Figure 11. The structure and
symmetry of the plate were such that modeling of only a small
azimuthal sector of one lip was necessary along with half of the
O-ring(s) as shown. The model was composed entirely of solid
‘elements. Calculations of modal properties, including energy
distributions, were made for a range of values of material
stiffness of the O-ring. Based on these calculations, a value
was found that would allow the plate to meet both the damping
and static stiffness requirements.

The next step was finding a viscoelastic material with the
required properties. After some searching, a form of
flourosilicon rubber was identified as a 1likely candidate.
Arrangements were made with a munufacturer to have some
fabricated into the required O-ring shape. The finished
product, resembling a strand of spaghetti, was installed and the
plate was retested.

Figure 12 shows, for the single O-ring configuration,
predicted damping as a function of temperature along with
measured values at two temperatures. The predicted natural
frequency of the critical mode and the increase in static
stiffness are also shown. Agreement between predicted and
measured damping was excellent and the value was well above that
needed to assure stability.

Figure 13 shows measured driving point frequency response
functions between acceleration response and force input at the
plate rim in the axial direction. The upper trace is for the
plate with no damping insert and the lower trace is with two
O-rings installed. The critical mode is at 2353 Hz. (without
O-rings) and is characterized by out-of-phase motion of the
plate lips, i.e. they move in opposite directions as they
vibrate. The 1increase 1in damping due to the viscoelastic
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inserts is quite dramatic and results in a decrease of response
at resonance of about 30 dB. The numerous modes of vibration
that occur below 2353 Hz. are only slightly affected by the
O-ring. They are in-phase modes in which the lips of the plate
move together and therefore produce no strain in the
viscoelastic.

6.0 Summary and Conclusions

Three mathematical methods for analysis of viscoelastically
d amped structures have been reviewed in the context of
applications to design using MSC/NASTRAN.

1. The complex eigenvalue method based on complex
stiffnesses is generally too expensive and limited with respect
to problem size. It is useful primarily as a benchmark for
testing less expensive approximate methods.

2. The modal strain energy method is an approximation to
the complex eigenvalue method. It is much less expensive and
can be applied to larger problems because it uses only real
normal modes. It is also well suited to design work because it
leads to optimum choices for both viscoelastic material and
geometry of the damping treatment. It can account for
variations in material properties with frequency in an
approximate but simple way.

3. The direct frequency response method can account
exactly for material property variations with frequency but at a
substantial cost penalty., It is wuseful primarily for final
predictions of response once a design has been selected and load
conditions have been defined.

The well-developed technology of viscoelastic materials 1is
an important asset for the design of structures which must
function under dynamic 1load. However, careful analysis 1is
required to make wuse of these materials. The modal strain
energy method is particularly well suited to design of add-on or
integral damping.

The authors are actively engaged in ongoing ‘research and
development work in damping design methods. Current efforts
concern the problem of curved sandwich panels. It has been
found by painful experience that these are substantially more
difficult to analyze than are flat sandwich plates. The
difficulty is believed to stem at 1least in part from the
out-of-plane normal stresses that exist in the interior of
curved panels under bending. These stresses result in
dilatational strain of the viscoelastic core as well as
shearing. The strain energy of the core thus depends on the



Poissons ratio of the viscoelastic material. That quantity 1is
often not known with precision and seems to be a function of
frequency and temperature just as are the storage and 1loss
moduli. Current work is directed at resolving these questions
and arriving at a practical analysis method for curved
sandwiches.
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