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SUMMARY

The theory and DMAP instructions for obtaining resultant force and moment
vectors of an arbitrary set of static or dynamic forces are presented. The
resultant moment vector is defined with respect to any point specified by the
analyst. DMIG cards are used to define the portion of the structure for which
the resultant force and moment vectors are desired. Rigid body displacement
vectors are used to calculate and sum the contributing moments and forces.

The use of optional pre-processing programs for generation of the DMIG cards
is discussed along with examples.

INTRODUCTION

Statically equivalent forces for a complex structure are often required
at a cross section, that may be transversed by many individual elements.
Summing the individual element forces by hand and calculating their moments
about some point in the section Plane is tedious and time consumming.

The theory and DMAP instructions presented here perform the summation and
moment calculations for any set of forces specified by the analysts.

THEORETICAL DEVELOPMENT

The structure is shown generally in figure 1. The forces and moments
to be summed are to the right of the section shown. First, moments are
to be calculated with respect to point '0' of figure 1. The familiar force
and moment summation laws are:
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The cross prc;duct terms in equation (1) may be written as :
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where : x;,y:,Zz; are the cartesian coordinates for point i and
{f, »f, sfi }: is the force vector applied at point i.
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Figure 1

To form the first summation in equation (1) we use (4) and the definition
of matrix multipliecation:

m F'
ZnxF=[R R, ... R] |[F (5)
F,
0 -Z; Y.
where : R;=}z. 0 -x]| . (6)
cye %2 0

2=



The second summation in (1) can be written as:
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where I is the three by three identity matrix. Therefore, given the forces
and moments at the grid points in the form:

{Fg}= [{£, ’f., 1Ty ,m,,am.‘am;.}; eee {£, sf.,brfi rm,,,’m.%’mt},,] (8)
we can calculate the resultant force and moment substituting equations (7) and

(5) in equations (1) and (2). Combining equations (1) and (2) into one
equivalent matrix equation, we obtain:

F I o I o
} (7.} (9)
M R, I R, I

where O is a three by three null matrix.

The matrix pre-multiplying {F,} in equation (9) is the transpose of the
rigid body mode matrix. Call this matrix &,,. Then equation (9), which
is equivalent to equations (1) and (2), may be written as:
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In the above formulation, since the coordinates x. 2¥; and z; are
measured with respect to the basic coordinate system, M in equation (10)
is with respect to the origin of the basic coordinate system. We will
denote this by placing a subscript '0' on the vector {F , M} . To calculate
the force and moment about another point 'i' from the force and moment at
point '0' we use a degenerate form of equation (9), but with the position
vector reversed in sign (see figure 2).
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Figure 2

DMAP FORMULATION

It should be noted that if equation (10) is used with {F,} being the
G size force vector and ®.4 being the rigid-body mode matrix, then the
forces and moments calculated are for the total structure and are with
respect to the origin of the basic coordinate system. To calculate resultants
for part of the structure, the Fs vector is "zeroed" out for those grid points
whose forces and moments are not to be included in the resultant force and
moment calculation. This is done by supplying NASTRAN with the grid points
to be ignored via DMIG cards. For each grid to be ignored, a set of DMIG
cards is supplied with -1's associated with the grids' six degrees of freedom.
By doing this, a matrix is formed with -1 's on the diagonal elements
corresponding to the grids' whose forces are not to be summed. This matrix
is then added to a G size identity matrix . The resulting matrix pre~
multiplies the F; vector, forming the desired ‘'zeroed® vector. In detail
the operation is:
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or: {FGG1} = [ IGG + IPICKi ] {FGG} (12)

The matrix IPICKi usually requires voluminous amounts of data but is
easily generated by a simple FORTRAN program (see appendix I). To facilitate
the generation of IPICKi, it is convenient to have the grid numbers for the
structure in some orderly fashion, so that blocks of them may be defined for
the FORTRAN program. The program can then read a copy of the BULK data, and
generate DMIG cards for those grids in the range specified.
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For each section about which resultants are to be calculated, an IPICKi
matrix is required. The resulting {FGGi} vector is then used as the {Fg} of
equation (10). Since the moments in equation (10) are calculated with respect
to the origin of the basic coordinate system, the {F,M} of equation (10) must
be transformed to point i (see figure 2) using equation (11). The
transformation matrix of equation (11) is also supplied using DMIG cards and
is called [SKEWi]. It was generated here using the same program that
generated [IPICKi]. The resultant forces and moments about a point i, for a
sub-region i, are then given by tpe DMAP equivalent of equation (11):

{FORSEC1} = [ SKEWL ][®asl{Fcci} (13)

EXAMPLE PROBLEM 1 , STATIC ANALYSIS

The sample problem is a cantilever beam as shown in figure 3.
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Figure 3

The FORTRAN program IPICGEN is presented in appendix I with the associated
input and output (DMIG cards are output). The DMIG cards are the same for
both static and dynamic analysis examples.

The input data deck and DMAP procedure for the static analysis are
presented in appendix II. The output obtained using the alter on this sample
problem is presented in appendix III. For each section we obtain a six by k

matrix, where k is the number of load vectors in PGG. A simple calculation
verifies the results obtained.



EXAMPLE PROBLEM 2 , DYNAMIC ANALYSIS

The only difference between this alter (presented in appendix II) and
the previous alter is that instead of operating on the force vector PGG
we use the modal forces given by:
F=[MG ][ PHIG ] (14)
and we operate on the mass matrix with the YPICKi matrices. In this example,

the output matrices must be interpreted as "modal forces", and must
pre-multiply the generalized accelerations to obtain actual forces. That is:

Fy = [ FORTSECTL ] { q } (15)
where : gg is the resultant dynamic force

q 1is the vector of generalized accelerations.

In this case we get a 6 by m matrix for each section, m being the
number of eigenvectors calculated.
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APPENDIX I

Flowchart for IPICGEN
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APPENDIX I (continued)
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APPENDIX II DMAP ALTER for Statics

3

3 FILE ¢ FORSEC1

$

$ )

3 A_TER FOR CALCULATING FORCES AT VARIOUS SECTIONS + SOL 24
3

ALTER 160 $

$ .

3 GENERATE RIGID B00Y AND AN IDENTY G SIZE MATRIX

3

VECPLOT, +3GPDTHEGEXINCCSTMy9/PHIRB2///4 $
DIAGONAL M3G/IGG/SQUARE/0. $

$

$ SECTION 1

3

MPYAD P41 IRB2+PGGs/FORSECL/ 3

MATPRN FOIRSEC1// s

$

L4 SZCTION 2

$

MTRXIN, sMATPOOLEQEXINGSILe/IPICK 299 /VeNoLUSET/1 3
ADD ISGe IPICK2/1GG2/ $ '

SMPYAD SKEWR29PHIRB241IGG24PGGyo9/FORSEC2/4 $

MATPRN FORSEC2// 3

s

$ - SZCTION 3

3

MTRXIN, sMATPOOL sEQEXINYSIL o /IPICK 399 /VeNJLUSET/1 3
ADD IGGyIPICK3I/IGG3/ &

SMPYAD S{EWR3¢PHIRB29IGG39PGGee /FORSEC3/4 3

MATPRN FIRSEC3/7 ¢



APPENDIX II (continued)
DMAP ALTER for Dynamics

3

3 FILE ¢ FORSEC2

3

3

$ A_TER FOR CALCULATING FORCES AT VARIOUS SECTIONS 4 SOL 25
3

ALTER 163 $

s g

$ GINERATI RIGID B80DY AND AN IDENTY G SIZE MATRIX

$ :

VECPLOTy o3 GPOTeEQEXIN9CSTMeg /PHIR2///4
DIAGONAL MGG/ IGG/SQUARE/0. $

$

3 SZCTION 1

$

SMPYAD P1IRB2¢MGGsPHIGe s 9/FORSECL1/3 $

MATPRN FORSEC1// $

$

s SZCTION 2

3

MTRXIN, sMATPOOLSJEGEXINGSILe/IPICK299/VeNoLUSET/1 $
ADD IGGyIPICK2/IGG2/ ¢

SMPYAD IGG2eMGG2IGG2499¢/MGG2/3 3

SMPYAD SKEWR29PHIRB29yMGG29PHIGeo/FORSEC2/4 3
MATPRN FORSEC2/7 3

3

$ SECTICON 3

$

MTRXINe sMATPOOLWEGEXINgSILe/IPICK399/VeNoLUSET/1
ADD ISGGeIPICK3/IGG3/ $

SMPYAD IGG3+4MGG9IGG3999/MGG3/3 8

SMPYAD SKEWR39sPHIRB2+MGG39PHIGss/FORSEC3/4 3

MATPRN FORSEC3// %
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