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ABSTRACT

For the analysis of radiation exchange between surfaces, it is not
posssible to take symmetry of a model into account in the present version of
MSC/NASTRAN. A method which can substantially reduce both the
computational and modelling effort by allowing symmetry conditions to be
utilized in the analysis is presented. This method is based on the fact that the
matrix of influence coefficients, required for the analysis, has a recognizable
pattern in the case of symmetric models. This pattern can be exploited to
reduce the computational effort. While derivation of the procedure is fairly
involved, the final resuit can be easily implemented in MSC/NASTRAN through
DMAP facility. The method is illustrated through a simple example. This
approach can be universally applied to a number of other finite element
applications.
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INTRODUCTION

Analysis capability of MSC/NASTRAN for thermal radiation exchange
between surfaces is often used for models which have symmetry conditions.
For example Genberg et al.* have used this capability to analyse the behavior
of illumination system containing diffuse surfaces. That appplication involves a
model which has symmetry about a plane. However, in the presently available
analysis of radiation exchange, there is no natural way to take symmetry of the
finite element model into account. In this paper, a method by which this can be
accomplished is presented. The method is based on the recognition that the
matrix of view factors, which is required for the analysis, has a "symmetric"
pattern for symmetric models. This pattern can be exploited to reduce the
computational effort.

*V. Genberg, D. Oinen & S. Fronheiser, ’Diffuse Illumination with
MSC/NASTRAN', presented at MSC/NASTRAN Users Conference, March 1983.



RADIATION EXCHANGE BETWEEN SURFACES”

The governing equation for radiation exchange between surfaces which
are divided into finite elements is given as follows:

{Qe} = -[RgI[GI{ug+ Ty} a0
where

[Rel = o[AE, - AE,[A-F[I- E]I"" FE, I @
and

{Qe¢l  netheat flow into an element due to heat radiation

[Rel radiation element matrix

[G] transformation matrix. It transforms grid point (or nodal)
temperatures to element temperature as follows

{ug}* = [G]{ug + Ty}

{ug} element temperature vector. Please note that element temperature is
assumed to be uniform over each finite element.

{ Ug } grid point tempertures

Ta a constant which converts ug to absolute temperature
o Stephan-Boltzman constant

[A] diagonal matrix of surface area of elements

[E.] diagonal matrix of emissivity

[E,] diagonal matrix of absorptivities

*This material is taken from NASTRAN Theorstical Manual, Section 8.3.4. For
theoretical aspects of heat radiation please refer to Siegel and Howell,
‘Thermal Radiation Heat Transfer’

"YIf { T } is a vector, { T }4 is defined as the vector whose components are the
fourth powerof { T }.

“**All the matrices will be denoted by bold lettering and/or by square
brackets ([] ).




[F] matrix of exchange coefficients whose element, Fij is as follows

Fij = I [ cos §; cos 0j dA; dAj
A Aj T rijz '
Fij length of the line connecting two point on elements i and j
b;, 0j angles between the connecting line and the normals to the elements
A;, AJ- surface area of elements i and j
Fij = A fij
fij fraction of power leaving element j which reaches element i

(this is commonly refered to as the view factor)

[1] unit diagonal matrix

HALF SYMMETRY CONDITIONS

If the geometry of the model to be analysed is symmetrical about a plane,
and the finite element mesh pattern is also symmetrical about this plane, like a
reflection in a mirror, then the model will be refered to as a half symmetric
model. It can be shown that the matrix of exchange coefficients, [ F ], under
those conditions, has the following form

-
[Faal [Fapl
[F]

3)

[Foal [Fppl

\oaom sl

where

[Faa] = [be] and [Fab] = [Fba] (4)

This assumes that the elements have been numbered in such a way that
[ F] can be partitioned, as shown above, into four square matrices, each being
half the dimension of [ F ]. This can be readily surmised from the purely

geometrical view factor definition of each element of [ F], where Fij = A fij’



and fij is the fraction of energy leaving surface element i and reaching

surface element j. For the sample problem shown in Figure 1, this would
mean Fyo = Fgg, Fi4 = Fsg: F13 = Fg7, F47 = Fs3, and so on.

This implies that for a model which has a mirror symmetry (half symmetry
conditions) about a plane; only half of the matrix need be calculated. This will
reduce right away the view factors calculation effort by half. The form of the
matrix shown above will be refered to as the half symmetry form for rest of
the discussions.

Next, it can be shown that the matrix [ Rg ], defined earlier in Equation

2, is also of the half symmetry form. That is, it can also be partitioned into four
square matrices and only two of which need be evaluated. To show this, it will
be assumed, quite reasonably, that the material properties, namely emissivity, ¢
, and.absorptivity, a , also exhibit.the half symmetry form. For the simple
problem shown in Figure 1, this would mean that ¢ and a are same for element
pairs 1 and 5, 2 and 6, 4 and 8, and 3 and 7. (Assuming symmetry about the y
axis). However, please note that these properties could be different for each
element numbered 1 to 4. The diagonal matrices [A],[E,]and [ E, ] can

each be partitioned in the following half symmetry form:

[X]2 [o0]
[X] = (5)
[0] [x]2

where [ X ]2 is a square diagonal matrix, half the size of [ X ], and [ O ] is the
null matrix.

In Appendix 1, it is shown that the product of two half symmetry form
matrices is also a half symmetry form matrix. It is quite trivial to show that
addition or subtraction of two half symmetry form matrices results into a matrix
of the same form. Further, in Appendix 2, it is shown that an inverse of a half
symmetry form matrix is also a half symmetry form matrix. Since the
operations involved in Equation 2 are all on the half symmetry form matrices, it
is quite clear that [ Ry ] is also of the half symmetry form. This implies that

only half of the matrix [ Rg ] need be evaluated.

So far, it has been shown that the matrix [ Re ] in equation (2) is of the

half symmetry form and hence the computational effort can be reduced by half
in its evaluation. Now the symmetry conditions on the "loading”, namely the
temperature distribution, will be utilized. As mentioned earlier, the finite
element approximation considers the temperature to be uniform over each



finite element surface (not necessarily the whole surface). It will be assumed
that the temperature distribution is also symmetric about the plane of symmetry
of the geometry of the model. In the case of the simple problem of Figure 1,
this would mean that temperature on elements 1 to 4 is identical with the
corresponding temperature of elements 5 to 8. In other words, the element
temperature vector, { ug } , can be partitioned in the following way:

{ug}®

{ug3* = ()
{ug}?

Let, |

{e} = [Eg1{ug ¥ (7)

It has been shown in Appendix 4 that { e } can be partitioned as follows:

{e}d

{e} = : ®)
{e}d

- -

where

{e}@ = [Ec12{ug}? ©)

Pleaée note that [E. ] is only a diagonal matrix.

Let,

{f} = [Fl{e} (10)

Since [ F ] is also a half symmetry form matrix, it can be shown that
(Appendix 4) :

{f)e

{1} = (11)
{f)2

where,

{f12 = [ [Faal + [Fapl 1{e}2 (12)

From Equation (9),



{f}e
Let,
[P] = [A - F(I - Ey)] (14)

Since[AL,[FL[1]and [E, ] are of the half symmetry form, [ P ] is
also of the same form. Hence, [ P ] can be partitioned as

-
[Paa] [Pab]
[P] = (15)
[Pap] [Paal

bnom .

[[Faa]"‘[Fab]][Ee]a{Ue}a (13)

Let,
[H] [p1-1 (16)

It has been shown in Appendix 2, that an inverse of a half symmetry form
matrix is also of the same form. Hence defining,

{h} = [H]{f} (17)
we get,
{h}2
{h} = (18)
|t
where
{hy@ = [ [Haal+ [Hgpl ] {f}2 (19)
It has been shown in Appendix 3, that
[ [Haal + [Hapl1 = [ [Paal + [Pgpl1-T (20)

However, from Equations 14 and 15,
[Paa] + [Pab] = [A2 - [Faa'*'Fab][l‘Eaa]] (21)

Continuing the process, it can be readily shown from Equations 1, 2, 6,
13, 20 and 21 that




o —

{Qe}?

{Ql = (22)
{Qg}2

where, o -

{Qe)® = - o[A2E2 - A2Ea[AB_[F,, + Fy ][I - E2]]-"

[Faa + Fap] [Ec 18] {ug)?
Please note the following with regards to the above equation:

(23)

o] It is half the size of Equation 1

0 The matrix inversion is on half the dimension of the matrix inversion in
Equation 1. Since it is a fully populated matrix, as opposed to banded,
the reduction in computational effort just for matrix inversion (which is
generally the main contributor to the total computation time) will be of
the order of cube power of 2i.e. 8. There will be other savings as well.

QUARTER SYMMETRY CONDITIONS

If the model is also symmetric about another plane, for example about
the x axis as well as the y axis in the sample problem shown in Figure 1, the
matrix, [ F ] of Equation (2) can be partitioned into the following quarter

symmetry form:

[ [Faal [Fapl [Facl [Fag]
[Fabl [Faal [Fagl [Fgcl
[F] = (24)
[Fac] [Fad] [Faa] [Fab]
[Fagl [Facl [Fapl [Faal

where each square matrix is of the quarter the dimension of [ F . Following

the same reasoning as before, it can be easily shown that

for quarter



symmetry conditions, Equation 23 will reduce to the following form:
{Qe)? = -0 [A2E2 - ABE B[ A [Faps Fop+ Fpot Fogyl

[1 - E.2117" [Faa+ Fap+ Fac+ Fagl [E 18] {ug)2

......... (25)

Please note that the above equation is of one-fourth the size of Equation
(1), and hence the reduction in computational effort will be at least of the order

of 43 i.e. 64.
SAMPLE PROBLEM

Consider the simple example shown in Figure 1. It consists of an open
rectangular box with four surfaces each of which is 10" long and 2" wide. The
box is modelled by eight finite elements, each of which is 10" long and 1"
wide. The box has symmetry both about the x axis and the y axis. The
temperature distribution is assumed to be zero for elements 1,5,3 and 7 and
equal to 1 for elements 2,4,6 and 8. Hence, it can be readily observed that the
"loading” is also symmetric about the x axis and the y axis. And this model
satisfies all the quarter symmetry conditions. The entire model without the
symmetry conditions was analysed using MSC/ NASTRAN.

For each of the elements, a = 1 and ¢ = 1. The view factors were
calculated by MSC/NASTRAN and are given as follows:

1 2 3 4 5 6 7 8
-O a b c 0 c d eml
a 0 c 0 c b e d 2
[F] = b c 0 a d e 0 c 3
c 0 a 0 e d c b 4
0 c d e Q a b c 5
c b e d a 0 c 0 6
d e 0 c b c 0 a 7
me d c b c 0 a O_J 8

a = 2805669, b = 2.068633, ¢ = .8070657, d = 1.536083,
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e = 0.9997281

Using the quarter symmetry method, given in Equation (25), the following
steps are carried out for elements 1 and 2 only,

o4 0
{ue}d = = (temperatures)
14 1
1.0 0.0 |
[ Ea ]a = [ Es ]a =
0.0 1.0
10.0 0.0
[A]2 =
00 - 100
10.0 0.0
[AJA[E,]® = [AJIR[E, ]2 =
0.0 10.0

0.0 0.0
[I - Eaa ] =
0.0 0.0



a o0 c 0 c b_| e d
g h
h g

where g = 3.604716 and h = 5.419773

c = 1.0

Substituitng the above terms in Equation 25, we get
5.420
{Qg}2 =
~6.395
The above values agree with the MSC/NASTRAN results.

CONCLUSIONS

A method which will substantially reduce both the computational and
modelling effort for the analysis of radiation exchange between surfaces by
taking symmetry of a model into account has been presented. The method can
be implemented in MSC/NASTRAN through DMAP facility. A sample example
illustrating the method has been solved. This technique is equally applicable to
other finite element applications where the matrix of influence coefficients (or
stiffness matrix) can be partitioned in a symmetric form.




APPENDICES

1. MULTIPICATION OF TWO HALF-SYMMETRY FORM MATRICES

Let [C] = [B][A] ,where [A] and [B ] are two half symmetry
form matrices. To show that [ C]is also of the same form.

[Caal [Cgpl [Baal [Bapl||[Aaa]l [Agp]
[Chal [Cppl [Bapl [Baal||[Aap] [Aaa]
[Caal = [BaallAaal + [Bapnl[Agp]

[Capl = [BaallAap] + [BapllAaal

[Chal = [Bapll[Azal + [BaallAgp]

[Chp]l = [Banl[Agp] + [BaallAgzal

Therefore,

[Caal = [Cpb ]

[Capl = [ Cpal

Q.E.D.

2. INVERSE OF A HALF SYMMETRY FORM MATRIX

Let [B ] = [A]~1 ,where [A ]is a half symmetry form matrix. To
show that [ B] is also a half symmetry form matrix. By definition,

[AI[B] = [I]

where [|]is a unit matrix. Or on partition,

12



[Aaa] [Aab] [Baa] [Bab] : [’] [0]

[Aap] [Aaal]|[Bpal [Bppl [0] [11]
Therefore,

[Aaa]l [Baal + [AgpllBpal = [I] M

[Aaal [Bapl + [Agpl1[Bpp] = [0] 2
[Aapl[Bagl + [Agal[Bpal = [0] 3)
[Aapl[Bapl + [Aga] [Bppl = [I] (4)

From (1) and (4), '

[Baal = [Aga]l ~1[[1] - [Agp1[Bpall (5)

[Bob]l = [Aaal ~7[[1] - [Agpl[Bap]] (6)

From equations (3) and (5),
[Bba] = [ [Aab][Aaa]-1 [Aab] = [Aaa] ]-1 [Aab][Aaa] -1 (7)
Similarty, from (2) and (6) ,

[Ban]l = [[AapllAzal V[ Azp] - [Aga] 17V [AgpllAg] =1 @)
Therefore,

[Babl = [Bpal )
Further, from equations (5) and (6),

[Baal = [Bppl (10)
Q.E.D.

3 MATRIX INVERSION
Given,
[B] = [A]-]

where [ A ] is a half symmetry form matrix, to show

13



[[Baa]"'[Bab]] = [[Aaa] +[Aab]]_1

Adding equations (1) and (2) and using the conditions (9) and (10) of Appendix
2, we get

[Aaa] [Baa] + [Aab][Bab]"‘[Aaa] [Bab] + [Aab][Baa] =[]
Therefore,

[[Agal +[Agpl] [[Baal +[Bgpll = [1]
And hence,

[Baa]"'[Bab] = [[Aaa] "'[Aab]]_‘l
Q.E.D.

4 PRODUCT OF A HALF SYMMETRIC FORM MATRIX AND A VECTOR

Given, [ A ]is a half symmetry form matrix and

{x}2
{x} =
{x}2
Toobtain {y} =[A]{x} ie.on partitioning,
(v} (Al [Agp] ((x)2 ]
{y)P [Agp]  [Agal {x}2

Therefore, it can be readily seen that
{y}2 = {yib = [[Aza] +[Agpll {x]}2



T : Temperature

Figure1

Sample Problem
Heat Radiation in an

Open Rectangular Box

elements
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