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EVALUATION OF THE P-VERSION OF THE FINITE ELEMENT METHOD

INTRODUCTION

The field of finite element analysis has been the subject of intense
development for many years [1, 2] and this tool in conjunction with the
powerful computers available today, make finite element analysis an important
part of the engineering analysis field, The methodology that most of the
current commercially available codes, such as MSC/NASTRAN, are based upon is
the so called h-version methodology which is based upon discretization of an
engineering problem into many small finite elements (h) and assuming a linear
or at most quadratic distribution of the unknown parameters in those small
finite elements. The success of this methodology has been so great that
Jittle attention was given to the p-version of the finite element method in
which the distribution of the unknown parameters on the finite elements were
no longer restricted to linear or quadratic, but to an arbitrary higher‘order
p. This methodolgy, which was virtually abandoned in the early stages of the
development, has made some very interesting advances in the last few years £3,
4, 5] and is the topic of this paper.

Briefly, the advances in the p-version methodology were demonstrated
using high ‘order elements with linear, quadratic, and in general, linear
blending mapping techniques in 2-Dimensional elasticity problems [5]. The

results of these studies indicated that:

1. Very good results can be obtained in smooth problems when the model
is discretized by only the minimum number of quadrilaterals.

2. With a high enough p-order, the elements become less sensitive to
shape.



3. Displacements and stresses can be computed accurately in the entire
domain; in fact, relative errors of less than one percent were
obtained for even singular problems.

Therefore, it was decided to perform a very complete evaluation of a
p-version finite element program in order to understand its limitations and

capabilities with the following goals:

1. Establish the numerical performance of the p-version FEM in broader
and more general problems. The results of the numerical performance
performed in this study are presented and examined in detail in
Section 1.

2. Evaluate the architectural needs of such a code for possible incor-
poration in MSC/NASTRAN. These results are presented in Section 2.

3. Comment on the possibility of incorporating such a program in a
small to medium size CAD/CAM system.

1.0 EVALUATION OF THE QUADHP ELEMENT

1.1 INTRODUCTION

In this section a series of numerical experiments are used to evaluate
the high order element QuadHP, "Quadrilateral - Hierarchic - Pconvergence",
obtained from a prototype FEM program. The experiments were designed to
examine static-membrane, dynamic-membrane, static-plate bending and dynamic-
plate bending (Reissner—Mindlin formulation) of the element and were performed
on typical engineering problems with real applications.

The three problems shown in Figure 1 (described in detail in Section
1.2.1) were felt to be sufficient to demonstrate the capabilities and the
deficiencies of the QuadHP element in static-membrane conditions and will be
analyzed in detail. The static¥p1ate bending behavior of the QuadHP was
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evaluated by analyses of the infamous Rhombic Plate problem (Figure 2). The
Rhombic Plate problem (described in Section 1.2.1) has been used for this
purpose for many years and an immense amount of literature is available on the
performance of other elements [8]. A brief review of this literature showed
that one of the best performing displacement-based finite elements is the
MSC/NASTRAN QUAD4 element. Hence, comparison will be made between the QuadHP
and QUAD4,

In the case of dynamic-membrane analyses, however, the selection of test
problems is much more difficult. To the author's knowledge, there are no
standard problems proposed in the literature that could be used for
comparison, It was therefore decided that, a good measure of performance
would be the first three eigenvalues of a simply supported plate (Figure 3).
In this section of the evaluation, the eigenvalues of the QuadHP element will
be compared with the QUAD4 element. The problem of selecting test problems for
comparing dynamic-plate bending analyses is even more difficult because in
addition to lack of standard test problems, it was discovered that in most
programs, including MSC/NASTRAN, the inertia due to the rotational degrees of
freedom are neylected and comparison of the results obtained from QuadHP with
their results would be unfair. It 1s noted here, however, that lower
eigenvalues, i.e., a better approximation, were obtained in plate bending
problems with the {uadHP and compared to QUAD4 and QUADY elements in all

prublems investigated.



1.2 MEMBRANE ANALYSIS

1.2.1

The

Figure 1,

Static Problems

problems selected for the static-membrane analyses, as shown in

are:

Finite width strip under tension with circular hole. This is a
typical problem in aerospace structures. The stress concentration
of this problem will be analyzed for a variety of r/w ratios.

Thin circular arch loaded at one end. This problem was recommended
as a test problem for quadrilaterals [6]. The vertical displacement
of the point under the load will be examined.

Thick walled cylinder under internal pressure. This problem was
recommended to examine the effects of nearly incompressible material
[6]. A plane strain condition is used to intensify the numerical
difficulties.

Thin circular arch under internal pressure. This problem will test
the membrane behavior of the QuadHP. The outward displacement of
the tube will be compared.

The mesh design for Problem 1 is shown in Figure 4. The NASTRAN mesh

consists of 334 elements and the QuadHP mesh consists of the minimum number of

quadrilaterals that could represent the geometry, i.e., 3. The results of

computation of stress concentration factor at Point A are shown in Figure la

plotted against the exact solution shown in a solid line. It can be observed

that with P = 8 the QuadHP results

1.

2.

Are more accurate than the MSC/NASTRAN results.

Are accurate in a large range of r/w of .05 to .90.



It is noted here that in order to model the r/w of .99 and .05, major
mesh modifications were necessary for the NASTRAN analysis, and therefore, the
analyses were not performed. This was not the case with QuadHP since the only
input value changing was the actual radius, and the wider range of r/w could
be analyzed easily.

The mesh design of Problem 2 for MSC/NASTRAN is shown in Figure 6. It
consists of 6 QUAD4 elements. The mesh for QuadHP consists of only 1 element
and is similar to Figure 1b. The relative error in the computed displacement
under the load is shown in Figure 7, in addition to results obtained from

QUAD8 and PAL2 [7]. It can be observed that

1. QuadHP results are more accurate than the other elements.

2. A smooth monotonic convergence is achieved by QuadHP. This makes it
possible to extrapolate these results for an even more accurate
value,

3. The strain energy of the QuadHP is also converging monotonically.

This cannot be said in general for QUAD4 or QUADS. Monotonic

convergence is considered a desirable but not a necessary feature of
a good element.

The results of Problem 3 are shown in Table 1 in which the ratio of the
computed values to the exact values are listed for the Poisson ratio of 0.49,
499, and .4999. The result of Poisson ratio of 0.4999999 is shown only for
p= 8. It is observed that in all cases, with p = 5 and above, the relative
error is less than 10% and at p = 8, the relative error is practically zero.
This is not the case for Poisson ratio of 0.4999999 in which the relative
error is about 8% at p = 8.

The results of Problem 4 are shown in Figure 8 for a 1 element QuadHP
mesh. It can be seen that errors of less than 1% are achieved for this

problem. The results were not compared with QUAD4 or QUADS.
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1.3 DYNAMIC PROBLEMS

The dynamic-membrane analysis was performed on a simply supported square
plate shown in Figure lc. This problem was analyzed with the QuadHP and a
uniform mesh of 1, 4, 16, 64, 256 QUAD4 elements. The first five eigenvalues
were compared but the results of the first three are shown in Figures 9

through 11. It is observed that

1. Both elements have monotonically converging eigenvalues.

2. The eigenvalues of QuadHP elements are smaller than QUAD4's for the
same DOF and therefore the QuadHP's are more accurate.

3. The rate of convergence of the QuadHP elements is about twice that
of QUAD4.

1.4 PLATE BENDING ANALYSIS

The simply supported thin plate is shown in Figure 2 with the corner
angle varying between 90 (square) and 30 (diamond) degrees. Since this
variation of the angle will cause the nature of the problem to change from
smooth to singular, the elements will be tested in both situations. The error
in the displacement at the center of the plate and the error in the principal
moments at this point will be compared. The exact results were obtained from
[8] for this purpose. The results of QUAD4 are given for a 4 x 4, 8 x 8, and
14 x 14 mesh configurations and will be compared to a single element mesh and
a 9 element mesh (Figure 11). It is noted here that it is not necessary to
increase the DOFs of QuadHP by a uniform mesh refinement since the user will
have the capability to put the needed DOFs where they are needed most, i.e.,

the singularity. It is also noted that the results of the QuadHP for
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polynomial orders of less than 4 are not valid since severe locking effects
will distort the results. However, as mathematically proven, this effect
disappears after P = 4 and the results will be valid for comparison. (ln the
JUAB4 element, a selective inteyration scheme is used to alleviate this
prublem.)

The results of the displacement W, the maximum principal moment {Ma), and
the minimum principal moment (Mb) using a single (QuadHP and the QUAD4 elements
are shown in Figures 12 through 20 for THETA = 90, 60, 30. (The results of
THETA = 40, 80 are alsoiavailable.) It is observed that in all cases the
QuadHP  results of displacements and moments are converging. More
specifically, the relative error in the displacement W using the QuadHP
element with about 100 DOF is the same as that of the QUAD4 elements at 560
DUF, This 1is not true for THETA = 30 degrees where the QuadHP achieves 15%
error at 100 DOF while QUAD4 achieves 8% error at about 200 DOF and 11% error
at 600 DOF,

The relative error in the principal moments Ma(maximum) and Mb(minimum),
using the QuadHP element, is about the same as that of the QUAD4 elements but
at about 1/2 to 1/3 of the number of degrees of freedom. This is not the case
with THETA = 30 degrees where the QUAD4 elements obtain the same accuracy at
the same NDOF in Ma but the QUAD4 results exhibit some oscillation in the Mb
computations. It is noted here that the values of the minimum principal moment
are very small in case of THETA = 30 degrees and the comparison of relative
errors could be misleading due to the smallness of the absolute error
involved.

The results so far have shown that a single QuadHP element performs
extremely well in case of smooth plate bending problems (90 to 60 degrees),

but for THETA = 30 a mesh refinement is recommended and necessary. The



results of the 9 element QuadHP mesh (Figure 21) for THETA = 30 degrees is
shown in Figures 22 through 24. It is observed that the increase in the NDOF
of this mesh improves the computed displacements and moments with respect to
the single QuadHP and QUAD4 elements. This improvement is apparent in both

the error values achieved and the converging trend of the errors.

2.0 ARCHITECTURAL REQUIREMENTS

There are some fundamental architectural differences between a correctly
constructed p-version finite element program and a conventional h-version
finite element program such as MSC/NASTRAN even when the h-version programs
include Serendipity or Lagrange type (8 or 12 noded) elements. The
differences could be attributed to two major Concepts in a p-version analysis

which are not present in the h-version analysis, namely:

1. In a p-version program, there are some degrees of freedom (DOF)
associated with the geometric entities of lines, surfaces, and
volumes (corresponding to an element), in addition to the
traditional DOFs associated with grid points.

2. The concept of a one-to-one correspondance between grid locations

and the value of unity of the associated shape functions is no
longer adhered to.

The degrees of freedom in a QuadHP element for each displacement field
will be either corner DOFs, side DOFs (surface DOFs 1in 3-Dimensional
analysis), or internal (bubble) DOFs. The corner, side, and surface DOFs can
have boundary conditions and loads assigned to them in a similar fashion to
that of the grid points in a grid-oriented analysis. For example, a
2-Dimensional QuadHP element can have at most 94 DOFs (two displacements) at

p = 8 with the following distribution: 8 corner DOFs, 56 side DOFs and 30
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internal (bubble) DOFs. In case of a plate bendiny anaylsis (one displacement
and two rotations), this distribution will be 12 corner, 84 side, and 45
internal DOFs. An h-version program will have two DOFs for each grid and 4 or
8 grids per element which adds up to 8 or 16 total degrees of freedom per
element for the 2-Dimensional case and three degrees of freedom per grid for
the plate bending problém for a total of 12 or 24 DOFs.

Since the individual degrees of freedom of the p-version program would
not have physical significance to the user, modeling techniques for external
loads and enforced displacements would have to be provided. In the
approaching era of fully automatic modeling this does not appear to be a
disadvantage for the p-version method.

The second major difference between the p-version analysis and the
h-version analysis deals with the original assumptions of the finite element
method. Therefore, it is necessary to review some of the related areas of the
theory in order to understand the consequences of this new approach. In the
finite element method the unknown variable, e.g., displacement field U in an

element, is assumed to have the form
V=] NU | (1)

where U; are the "nodal" diplacements and N; are the shape fuhctions of the

polynomial of order p. In a linear element (p 1), which is the parent
element of all elements, it is assumed that the displacement field has a
linear distribution and the shape functions (Ni) are constructed so that they
have the value of unity at the ith node of the element. In a conventional

quadratic element (p = 2), there are four more midside nodes supplied and the

additional shape functions are so constructed as to have the value of unity at



these additional nodes. An entire family of higher order elements could be
constructed with the same concept in mind and depending on the technique used
to construct the elements, this would result in a Serendipity or Lagrangian
family of elements. Note that this technique of constructing additional shape
functions and thus elements, does not take into account the numerical
conditioning of the stiffness matrices generated, and if infinite precision
were possible, the quality of the finite element analysis would have not been
affected. In practice however, because of the finite digit arithmetic, the
conditioning of the stiffness matrix of the elements is quite important and
experience has demonstrated that the Serendipity and Lagrange family of high
order elements could have numerical problems at p-orders of as low as 4 or 5.
The cause of this ill-conditioning could be directly traced to the requirement
on the shape functions of having a value of unity at a given "node" of the
element (the polynomial selected for the 12th shape function was forced to
have a value of unity at the 12th node). It is noted here that there is no
theoretical need for this constraint since as long as the displacement field
is interpolated over the element by the relation of Equation 1, the theory of
the finite element method is valid and the convergence and stability cirteria
are not altered. An analogy to this behavior is the improved numerical
performance of a simple curve-fitting program when an orthogonai base, such as
Legendre or Chebychef polynominals, are used as oppose to a normal polynominal
expansion. The theoretical accuracy of the curve fitting is only governed by
the polynominal order used, but the numerical behavior using the orthogonal
system is far superior.

In the QuadHP element, the shape functions were constructed so that they
produce a stiffness matrix which is nearly orthogonal with respect to the

Laplace operator on a square domain. The Laplace operator was selected for
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this purpose because the theory of similar operators [10] predicts a similar
numerical behavior from the shape functions in all the operators of this
class. This means that N; will no longer have the value of unity at the
goemetrical Tlocation conventionally associated with the ith node but some
other values 1like 0.5 or 0.3. The result of this selection is that the
stiffness matrices obtained by using these shape functions are very well
conditioned for all the solution squences dealing with differential equations
related to the Laplace operator. This good numerical behaviour was
demonstrated in the Rhombic Plate problem of Section 1 in which the material
properties were so selected as to bring out numerical ill-conditioning of the
stiffness matrices as well as the quality of the final displacement and stress
values.

This method of constructing the shape functions has one additional
benefit; it is no longer necessary to require n physical nodes to be input for
a p-order element since the concepts of nodes can now be replaced by the
concept of deyrees of freedom and yenerated internally. This means that atter
the minimal yeometrical intormation is supplied for an element (the 2-U QuadHP
needs 8 nodes), the element yeometry can be constructed. Next, depending on
the order ot p (p =1 to 8 tor the QuadHP) specified by the user, the degyrees
of freedom are yenerated internally. After the initial analysis is performed,
the user can perform another analysis with more deyrees of freedom (in most
cases a more accurate analysis) by simply inputting a higher p-order for the
elements involved. No other additional input data such as loads,
displacements or boundary conditions are needed since these parameters are
generated internally. This extension process can continue until the user is
satistied or the maximum polynomial order is used (p = 8). At this point he

simply chanyges the yeometrical input once more and starts again.
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At this point, it is important to briefly discuss the continuity enforced
in the p-version method. The QuadHP elements are C, elements; this means that
there is no enforcement of higher order derivatives in the direction normal to
the sides of the element. However, the displacement field along the side of
two neighboring elements 1is matched exactly, and as a result, all the
derivatives along that side will match. This is exactly the case in the
h-version method since the displacement along the side of two neighboring
elements is given as a linear or quadratic function of the nodal values
associated with that side and hence, the displacement along that side is
exactly the same. This type of continuity is mathematically the one that will
result in the best numerical results since the space containing the
permissible solutions will be as large as possible*.

The effects of implementing these concepts in a general purpose program,
can be divided into two categories. The first one can be Tlabeled the
input/output data management category and includes the additional card images
that have to be processed and appropriately stored in the data base of the
program. This information would include for example, the loads and boundary
conditions on the sides of the element, the order (p) of the element and so
on. It is not difficult to design a data base to accomodate these needs of a

p-version program.

*The solution u(FE) of a finite element analysis must have a finite strain
energy associated with it. A simple and not very mathematical way to under-
stand the effects of enforcing higher continuities is to consider all the
functions satisfying this condition as "balls" and the space containing all
these solutions as a “bowl". As higher continuity is enforced, there are
more “"holes" made in this “"bowl" and it will be containing less "balls".
This means that there will be less functions available to be the u(FE) and
therefore the solution in general deteriorate.
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The second category deals with the element stiffness generation and
solution phase of the program. Here, fewer but much 1larger and denser
stiffness matrices are generated which demand larger storage areas and use
more CPU time. For example, a 2-Dimensional QuadHP element with p = 8 (maximum
order) has a stiffness matrix of 94 X 94 with a density of between 17 to 40
percent depending on the distortion of the element. This compares with a
linear element of size 8 X 8 for the h-version program. Note that even though
the individual element stiffness matrices are large and the assembly phase per
element of the matrices are more CPU intensive than that of the h-version
programs, the assembled global stiffness matrix is of a reasonable size and
the total assembly CPU time is about the same. This is because the total
degrees of freedom for a given problem is usually 1/3 of the h-version
analysis (in Problem 1 of Section 1 for example, the size of the global
stiffness matrix is about 250 X 250). The only difference will be the
bandwith of the p-version matrix which is larger than the comparable h-version
matrix. This brings us to the final phase of this section, i.e., the solution
phase. It must be clear that because of the larger bandwidth of the p-version
global stiffness matrix, a conventional bandwith solver will not be as
efficient and the CPU time for the solution will be larger than the comparable
h-version matrix.** This topic needs to be discussed in more detail when the
possibility of parallel processors in conjunction with the p-version is
discussed. |

In the data recovery phase of the analysis, e.g., stress computations

there are less elements but more data that has to be used for each element.

**This is one of the reasons that the Frontal Solution Method [11] has some-
times been used for the solution of these global matrices.
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At the same time however, there is no need for extrapolation or other
smoothing techniques for stresses on the boundaries since these values are
quite accurate for p > 4 or p > 5 when directly computed from the solution.
In general, this section of the program is very similar to a conventional

program, however, it offers improved post-processing capability.

3.0 MODELING 3-DIMENSIONAL STRUCTURES

The modeling technique used for a 3-Dimensional analysis of a structure
is either a full 3-Dimensional analysis using solid finite elements or an
analysis using a combination of shell and membrane elements. The full 3-D
analysis is a very expensive operation and it is usually a last step in an
analysis/design cycle. The other technique is much more reasonable since in
most analyses it is possible to represent the structure in a two dimensional
curvilinear coordinate system and model it with a combination of shell and
membrane elements without an unacceptable loss of accuracy. It is therefore
necessary for a general purpose finite element program to have both type of
elements in order to give the analyst the opportunity to select the right
element for the type of analysis he 1is performing. In this section the
applicability of the p-version methodology to the construction of solid (3-D)
and shell elements is addressed briefly and some of the difficulties that will
arise are discussed.

First, let us discuss the 3-Dimensional elements. It should be quite
clear that constructing a p-version isoparametric three dimensional element is
conceptually simple and very straight forward. In fact, the same techniques
which are used to convert the h-version 2-Dimensional elements to an h-version

hexahedra elements are extended to handle the larger number of shape functions
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associated with the p-version element. The only parts that need additional
attention are the tormulation and the necessdary input data of the linear
blendiny mappiny techniques for three dimensional structures. This is the
capability which allows the user to define sides as being circular, spherical,
etc., 'and was quite useful 1in the 2-Dimensional analyses. However, the
stiftness and load vector matrices generated from the 3-Dimensional elements
are even larger than of the 2-Uimensional elements and it is necessary to
address the “BEST" computing environment for this type of analysis.

The recommended environment for any 3-Dimensional analysis in general is
usually the large mini-computers, such as the VAX 11/780 series or larger
main-frame computers. But even the performance of this type of machine
becomes unacceptable for very large problems making the super computers, such
as the CRAY machines, the ideal machines for this class of problems. An
analyst using a 3-Dimensional p-version analysis will encounter very similar
problems as the problem size increases and even though he is able to get more
accurate results with less degrees of freedom with the p-version program, he
can easily overburden a main-frame machine if he is not careful with the total
number of degrees of freedom he chooses to model the structure. This can
happen because he is not forced to refine the mesh he has selected by
inputting more grid point Tlocations which is quite difficult in a
3-Dimensional model, but by simply increasing the p-level of the elements
already involved. As a result, it seems that the best environment for medium
to large 3-Dimensional problems is the super computer class which allows the
user to perform very accurate analyses with reasonable turnaround time.

The development of p-version shell elements is not as straight forward as
the 3-Dimensional solid elements since many more questions have to be resolved

before a general shell element can be constructed. These problems have
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nothing to do with the p-version methodology and are also unresolved in the
h-version analysis. They deal mainly with the shell theories available in
modern elasticity and the construction of a finite element which can model the
shell effects, such as the transverse shear effects, and still pass the
general requirements of the finite element method such as the patch test.
These problems are still under research and even though many solutions have
been proposed, it is felt that they are not yet suitable for implementing into

an "IDEAL" p-version shell element.

4.0 CONCLUSION

The QuadHP element was tested thoroughly in Section 1 of this study and
all the results obtained indicated that this method could be a very effective
and powerful tool in the hands of a trained user. The excellent numerical
performance of the program in the test problems of Section 1 in conjunction
with a better pre- and post-processing possibilities of the program makes this
program a commercially viable alternative to the conventional h-version finite
element program. There are two additional topics that were not discussed in
details but should be kept in mind in regards to the p-version analysis.
These are automatic mesh generation and error estimates. The p-version is
extremely well suited for automatic mesh generation because of the very few
established and compliete guidelines that are now available for this purpose
[12]. These same guidelines are also the very essence of an error estimation
section of the program which could help (or warn) the user/analyst in
performing an analysis that can not be accurate using the selected mesh. One
area that the p-version with or without error estimators will be quite

effective is the field of shape optimization. Here, the design model and the
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finite element model will be very similar and include very few high order
elements. These elements will be able to give accurate results to the
optimization program even when they are extremely distorted since they are not
very sensitive to this parameter. Next, the data from the optimizer could be
directly used to construct the next configuration that has to be analyzed and
therefore, the iteration process can conclude very quickly. Note, that if an
error estimator is operational, the user will be warned when the model is no
longer useful for the analysis and he can, with very few modificatioqs, change
the model and continue with the process. This capability is currently being
investigated in a joint project between MSC and UCLA.

The discussions in Section 2 however, showed that a p-version program is
a more detailed program than a conventional finite element program and more
logic has to be incorporated in the code in order to take full advantage of
the power of the method. With the increasing demand on a complete and
user-friendly engineering workstation, this should not be viewed as a
disadvantage since the geometric entities needed in the p-version. program are
very similar to the ones in existing CAD software and it is not difficult to
visualize a CAD system using a p-version program as its very accurate analysis
system. This possibility becomes even more enticing when a nulti-processor
environment is considered for this purpose since it is quite obvious that the
architecture of a p-version program is very suitable for a parallel processor
environment. For example, it is feasible to assign a separate processor to
each element of the problem which will expedite the generation of the
stiffness matrices and possibly the solution of the global stiffness matrix
through a disection method.

It is also possible to incorporate this technology in an existing finite

element program if the architecture of the program is modified as to have the
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ability to handle the specific needs of the p-version program. In fact,
successful but awkward runs have been made by declaring the DOFs obtained from
the QuadHP element as Scalar Points in MSC/NASTRAN and in some other instances
the eigenvalue solutions of Section 1 were checked using the eigenvalue
solution capabilites of MSC/NASTRAN.

The following recommendations are made as to possible future developments
for this product. First, the feasibility of a full incorporation into
MSC/NASTRAN should be more thoroughly investigated. At the same time, the
feasibility of a smaller program in conjunction with a CAD software should
also be studied which should also include the implications of using a multi-
processor system., It is felt that this technology will be effective in both
environments with the MSC/NASTRAN version responsible for large full scale
analysis (3-Dimensional) and the CAD system serving as a tool for small to

medium size problems.
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Figure 1. Static Test Problems (Cont.).
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Figure 3. Eigenvalue Analysis Problem of Simply Supported Plate.
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Figure 4. Mesh Design for Problem la.
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STRESS CONCENTRATION FACTOR
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Figure 5. Stress Concentration Factor at Point A for Problem la.
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Curved Beam

Ry = 4.12
R, = 4.32
T =0.1
E =1.0 x 107
v = 0.25
MSC/NASTRAN MESH = 6.1

Loading: wunit forces at tip

Figure 6. MSC/NASTRAN Mesh Design for Problem 1b.
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Log (Relative Error)
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Figure 7. Relative Error of the Computed Displacement under the Load
for Problem 1b (Circular Arch Loaded at End)
Table 1. Ratio of the Computed to Exact Displacement of Problem 1d.
NU=0.49 0.499 0.4999 0.4999999
P NDOF Ul/Uex Ul/Uex Ul/Uex Ul/Uex
1 2 0.168 0.020 0.002
2 10 0.578 0.122 0.014
3 16 0.916 0.523 0.099
4 24 0.990 0.907 0.494
5 34 0.999 0.990 0.904
5Q8 34 1.000 0.997 0.967 =g~ NASTRAN WITH 5Q8
6 46 1.00 0.999 0.990
7 60 1.00 1.000 0.999
8 76 1.00 - 1.000 1.000 0.918
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Log (Relative Error)
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Figure 8. Relative Error of the Computed Radial Displacement
of the Thin Cylinder under Internal Pressure.

0.50

0.40 Q\\\
oo | “\

B

N‘n‘
0.10
.00
0.5 1.0 1.5 2.0 2.5 3.0

Log (DOF)

Figure 9. First Eigenvalue of Simply Supported Square.
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Figure 10. Second Eigenvalue of Simply Supported Square.
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Figure 11. Third Eigenvalue of Simply Supported Square.
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Figure 12, Relative Error of Displacement w, at the Center
of a 90° Simply Supported Plate.
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Figure 13. Relative Error of Maximum Moment Ma, at the Center
of a 90° Simply Supported Plate.
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Figure 14. Relative Error of Minimum Moment Mb, at the Center
of a 90° Simply Supported Plate.
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Figure 15. Relative Error of Displacement w, at the Center

of a 60° Simply Supported Plate.
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Figure 16. Relative Error of Maximum Moment Ma, at the Center
of a 60° Simply Supported Plate.
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Figure 17.
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Relative Error of Minimum Moment Mb, at the Center
of a 60° Simply Supported Plate.
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Figure 18. Relative Error of Displacement », at the Center
of a 30° Simply Supported Plate.
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Figure 19. Relative Error of Maximum Ma, at the Center
of a 30° Simply Supported Plate.
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Figure 20. Relative Error of Minimum Moment Mb, at the Center

of a 30° Simply Supported Plate.
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Figure 21. Refined QUADHP Mesh for 30° Rhombic Plate (9 element).
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Figure 22. Relative Error of Displacement w, at the Center
of a 30° Simply Supported Plate.
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Figure 23. Relative Error of Maximum Moment Ma, at the Center

of a 30° Simply Supported Plate.
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Figure 24. Relative Error of Minimum Moment Mb, at the Center
of a 30° Simply Supported Plate.
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