ENGINEERING SYSTEMS
A. O. SMITH Data Systems, Inc.

Vern D. Overbye

MSC/NASTRAN Dynamic Analysis: Modal or Direct?

Presented at
MSC/NASTRAN USERS' CONFERENCE
Los Angeles, CA

March 20 - 21, 1986



ABSTRACT

MSC/NASTRAN offers dynamic analysis capability using direct or modal
formulations with or without superelements. This paper compares
computer resources and results accuracy using direct and modal
analysis of a linear, nonsuperelement vehicle-type structure. A
novel approach to response spectra capability is used to determine
forcing function frequency content. A real eigenvalue primer is

also included in an appendix.

INTRODUCTION

Background

Recently the author presented a brief lecture series on MSC/NASTRAN
dynamic analysis to a group of engineers in the automotive industry.
The experience level within the group varied between several months
and a few years. All were familiar with conventional linear static
analysis (SOL 24) and real eigenvalue analysis (SOL 3) to determine
eigenvalues and eigenvectors using Generalized Dynamic Reduction
(GDR,1)*. A few individuals had used either modal frequency
response (SOL 30) or geometric and nonlinear-material transient
analysis (SOL 99). Management concluded that a basic course in

dynamic analysis would be useful for future analysis assignments.

This presented the author with an opportunity to review a concisely-
written introductory text on matrix representation of linear (and
somewhat nonlinear) transient and modal frequency response applica-
tions (2). Also, the new MSC/NASTRAN handbook for dynamics (3) was
reviewed, as well as the text accompanying an MSC video-lecture
course on dynamic and nonlinear analysis (4). This rather over-
whelming collection of theoretical expertise was condensed to an
eight hour summary with the objective of the lectures to choose the
appropriate MSC/NASTRAN solution capability, create the model,
execute dynamic analysis and produce output results with emphasis on

XY plotting, and interpret the results.

* See Reference section



Paper Organization

This paper presents dynamic analysis choices available to the en-
gineer performing conventional linear dynamic transient analyses and
provides guidelines on when certain methods are appropriate. A
novel application of MSC/NASTRAN Response Spectra (5) determines
frequency content of a forcing function, and & transient analysis
application to a vehicle-type structure emphasizes a rational choice
between direct or modal solution formulation using material damping

options.

Appendix A is presented to briefly review real eigenvalue and eigen~
vector basics. MSC/NASTRAN computer timing formulae are presented

to emphasize estimation of this important parameter in Appendix B.




MSC/NASTRAN DYNAMIC TRANSIENT ANALYSIS OPTIONS

Background

Figure la presents the usual strategic decision dilemma facing the
engineering analyst of selecting a dynamic transient analysis method
(6). The figure assumes the modal analysis approach will be used
only for linear analysis with damping such that the dynamic equa-
tions are uncoupled (see Appendix A). This strategy ignores the
MSC/NASTRAN capability of coupled modal methods and nonlinear
capability using NOLINi Bulk Data. The author proposing Figure la
strategy assumes nonzero initial condition capability is available

for a modal formulation which is not true in MSC/NASTRAN.

The direct transient analysis approach in Figure la is completely
general in MSC/NASTRAN with optional DMIG-input of mass, stiffness
and damping matrices in small displacement linear-material analysis
(SOL 27). Geometric and material nonlinear analysis (SOL 99) has
recently become available. Non-zero initial conditions are avail-
able for both the linear material and nonlinear material

formulations (TIC cards).

Figure 1b shows an abreviated flow chart (7) for MSC/NASTRAN linear-
material small displacement direct or modal transient analysis. The
figure shows that the direct or modal approach is implemented by
appropriate modules early in the program with common modules used in

equation time integration, data recovery, and XY plotting.

Figure 2a shows the MSC recommendation for proper use of eigenvalue
extraction options including GDR (8). It is the author's opinion
that GDR is appropriate for all modal transient solutions regardless

of the number of the DOFs in the structural model because:

o A common group of cards (ASET1, QSET1, DYNRED, etc) insures
that this method will be used on large models where any other
method would have drastic, adverse economic effects during

computation.



© Any penalty for using GDR over conventional Givens or

Modified-Givens methods on small models is negligible.

Maximum DOF bounds are suggested by authors for choosing a modal or
direct transient analysis formulation. This paper shows horrendous
CPU-time required for a 1500 time step solution of a moderate-size
model (about 5000 DOF), which emphasizes that the direct method be
used only on up to a few hundred DOF models. Models over 10,000 DOF

should use modal formulation and superelements.

Forcing Function Frequency

Transient analysis authors (2,9) emphasize proper choice of time
step in linear as well as nonlinear analyses (see Figure la). 1In
linear analysis a large time step will not sample tabulated input
forcing functions adequately and output XY plots will not be smooth.
However, MSC/NASTRAN guarantees convergence for the linear case
regardless of time step size. In nonlinear analysis time step size
can have a significant influence on convergence (with a smaller time

step more likely to converge).

Many analysts (including the author) do not have convenient access
to a Fast Fouier Transform or Harmonic Analysis program to predict
forcing function frequency content. For this reason the author
presents a novel application of the MSC/NASTRAN response-spectra-
curve generation option (5) to estimate forcing function frequency

content in the next section.
FORCING FUNCTION FREQUENCY CONTENT USING RESPONSE SPECTRA

Introduction
The author has found that a single degree of freedom (SDOF)
oscillator model may be used to determine frequency content of an
arbitrary forcing function using MSC/NASTRAN Response Spectrum
analysis (5). The simple steps may be summarized as:
o Construct a SDOF oscillator using a large mass (CMASS2) and
a unit spring (CELAS2),.




o Apply the TLOAD1 - TABLEDl time history to the large mass as
an enforced velocity using SOL 27 with an appropriate number
of time steps to insure proper tabular-data sampling and
smooth response curve XY plotting.

o Examine a standard MSC/NASTRAN XY plot displaying the mass
relative displacement response spectra (imaginary part in
response spectra printout).

o Forcing function frequency pesks will be evident, with the

absolute magnitude of the harmonic coefficients displayed.

Example One Illustration

Figure 3a shows time history of a 0.1 second period square wave (10
Hz) for time period of 0.25 seconds. This function is applied to
the SDOF oscillator described above as an enforced velocity. Figure
3b shows the relative-displacement response spectra output by the
program. The figure shows frequency peaks at one, three, five, etc.
times fundamental frequency of 10 Hz. Absolute amplitude of the
frequency peaks decrease monotonically with frequency as predicted

by the square wave Fourier series shown in Fig 3a.

Complete MSC/NASTRAN run deck details are shown in Figure 4. The
figure shows 500 0.5 millisecond time steps used with output at each

time step.

Example Two Illustration

Figure 5a shows an enforced triangular wave velocity function (10
Hz) applied for 0.25 seconds to the SDOF oscillator described above.
As before, Figure S5b shows the relative-displacement response
spectra. Frequency peaks occur at one, three, five, etc. times
fundamental frequency, with the absolute amplitude of the peaks
attenuated much more than the Example One result. These amplitude
peak magnitudes agfee quite well with the Fourier series coeffi-

cients shown in Figure 3a.



Practical Application

A typical input forcing function recently encountered in an ac-
celeration analysis of a vehicle-type structure is shown for a 0.25
second period in Figure 6a. TABLED] cards described this function

using 128 time~amplitude pairs with smallest time step of about one

to two milliseconds.

Figure 6b shows relative-displacement response spectra for the
Figure 6a function applied as an enforced velocity excitation to the
SDOF oscillator described above. A total of 2500 0.1 millisecond
time steps were used with output at 0.5 millisecond intervals. The
resulting absolute relafive—displacement response spectra shows a
peak at 4 - 6 Hz with amplitude attenuated at the higher frequencies

(200 Hz range in Figure 6b).

Conclusion

A SDOF oscillator response spectra analysis with an enforced
velocity input has been shown to yield relative displacement
response spectra output that identifies frequency peaks with ab-
solute displacement amplitude proportional to Fourier series
coefficient magnitude. It has been further observed that suffi-
ciently small time steps are required to adequately sample the
function (as shown in Figure 6a). A frequent TSTEP-output interval
is required to insure that resulting relative-displacement response

spectra contains high frequency components.
MSC/NASTRAN DYNAMIC TRANSIENT APPLICATION

Background

This section illustrates application of MSC/NASTRAN modal and direct
transient formulation to a vehicle-type structure. Computer CPU
timing formulae given in Appendix B are used to estimate computer
time resource requirements for eigenvalue extraction and transient
excitation of a moderate-size model. Also a small model is used to
compare natural frequencies to the moderate-size model using both

lumped and coupled-mass options on the small model.



Finite Element Models

Figure 7a shows frame members (CBAR) of a vehicle-type model*, while
Figure 7b shows skin elements (CQUAD4). MSGC/NASTRAN MSGMESH (10)
was used to generate a small, coarse model and a moderate-size
finer mesh model. Physical attributes of the two models are shown
on the figure. The MSGMESH preprocessor was convenient for this
application, especially the automatic EQUIV feature. A few EGRIDS,
CGEN, and CBARG cards were easily changed to produce the two models
during each analysis run. The EQUIV feature insured welded attach-
ment between frame and skin at all points. However, the discerning
reader will note that the X-braces are attached to the skin at fewer

locations for the small model.

The vehicle-type structure was supported at each of three corners
with a grounded-spring - viscous-damper arrangement. The left front
corner had a road-induced vertical enforced displacement applied

at the lower end of the suspension as shown in the figure.

Structure Natural Frequencies

Table 1 compares natural frequencies for the small and moderate-size
models obtained using GDR to 200 Hz. The moderate-size model used
lumped mass (default) analysis, while the small model was analyzed
using lumped and coupled mass (PARAM, COUPMASS,1). The table shows
good correlation to about 100 Hz with the small lumped mass result
closer than the small coupled mass model in predicting moderate-size

model results.

*Any similarity between this model and any existing or conceptual

vehicle is purely coincidental.



Table 2 compares IBM 3084 computer CPU-time requirements for real
eigenvalue extraction (using GDR) as a function of FMAX for the
moderate-size model. The table emphasizes solution economy that
will result if the analyst has knowledge of forcing function fre-
quency content as shown above. Higher frequency structure modes
will not be required if only low frequency excitation is present.
Hence, FMAX may be reduced. Table 2 also shows that the DYNREDU
module dominates computer CPU-time requirements when using GDR.
Total CPU-time estimates (quite accurate for FMAX = 100) are based

on Appendix B formulae.

Modal and Direct Transient Analysis

The Figure 6a time function was applied as an enforced displacement
to the moderate-size model (Figure 7) at the front left corner to
0.25 seconds and constrained to zero motion for the balance of al.5
second interval. The TABLED1 tabulation of the Figure 6 func-
tion was multiplied by five to yield peak enforced displacement of
about 13 centimeters. A total of 1500 one millisecond time steps
were used with output at 15 time step intervals to insure clear XY
plots. Modes to 100 Hz was used in the modal transient analysis

based on the forcing function frequency content (see Figure 6b).

The aluminum frame structure was given a 2 percent of critical
material damping (GE entry on MAT1), while the composite skin was at
15 percent of critical. No modal (frequency dependant) damping was

used during the modal formulation.

Figures 8 - 10 show modal and direct transient displacement results
at the enforced suspension, the other three suspensions, and at
three locations on the main structure. As expected the modal and

direct transient analyses yielded identical results.

Table 3 compares IBM 3084 CPU-time requirements for the direct and
modal analyses. It is quite obvious from the table that the
analyst could recompute (noncheckpointed) structural modes to 100 Hz
using GDR and still use only one-sixth of the computer CPU time when

compared to the direct transient result for 1500-time-step

-9-



analysis. The table also shows direct-formulation CPU time for 500
and 1000 time steps to demonstrate that TRDl-module time is propor-

tional to the number of time steps (see Appendix B).

CONCLUSIONS
This paper has compared direct and modal formulation transient
analysis solutions using MSC/NASTRAN conventional analyses (soL 27

and SOL 31). It is evident from the results presented here that:

o A simple application of MSC/NASTRAN response-spectra-curve
generation capability yields frequency content and relative

absolute magnitude of the Fourier coefficients.

o A knowledge of forcing function frequency content is useful
in setting upper limits for FMAX when extracting eigenvalues

using GDR.

o Direct transient analysis is not cost-effective for
moderate-size structures requiring several hundred time

steps.

o Modal transient is preferred because natural frequencies are
usually desired, a checkpointed run may be restarted, and
solution accuracy is comparable to direct transient

analysis.

Figures 11 show in cartoon form a summary of direct and modal tran-
sient analysis features as well as application of the response
spectra technique to determine frequency content of proposed forcing

functions.

-10-
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NASTRAN EXECUTIVE

1D SEIS RESP
SOoL 27

TIME 1999
ALTER 462,462
CEND

CASE CONTROL

TITLE= SQ
SET 1=7
DISP(PLOT)=]
VELO=1
DLOAD=12
TSTEP=1
OUTPUT (XYPLOT)

PLOTTER NAST

XPAPER 26.

YPAPER 24.

XDIVISIONS S

YOIVISIONS 5

XTITLE FREQUENCY HZ

YTITLE RESPONSE DISPL
XYPLOT,DISP,SPECTRAL,1/7(T11IP)

WAVE FUNCT, 18 HZ, 8.25 SEC

Example Problem One

CONTROL

BEGIN BULK
SORTED BULK DATA ECHDO
.l .. 2 .. 3-.. 4 .. 5 .. & .. 1 8 .. 9 .. 18
CELAS2 71 1. 7 1
CMASS2 382 1.43 7 1
DAREA 1 7 1 1.+3
0TI SPSEL @
DTI SPSEL I 2 3 7 ENDREC
FREQ 2 8.
FREQ1 3 8. 2. 59
GRID 7 23456
PARAM  AUTOSPC YES
PARAM  RSPECTRAZ
TABLED] 12 +T12
+T12 8. 9. .Bags 1. .85 1. .g5001 1. +T12A
+T12A .1 -1. .1881 1. .15 1. .15881 -1, +T128
+T128 .2 -1. .2981 1. .25 1. ENOT
-TLOAD1 12 1 2 12
TSTEP 1 580 .8095 1
ENDDATA
FIGURE 4. MSC/NASTRAN Response Spectra Run Deck,
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FIGURE 11. Cartoons
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Mode

BW N -

20
21
22
23

37
38

44
45

50
51

59
60

62
63

92
93

TABLE 1.

Vehicle-Type Structure Models, Eigenvalues Comparison

Frequency of Elastic Modes In Hertz

Smal |,

Lumped Mass

1.5
2.8
2.9
9.9

40.6
41.0
44.9
50.4
55.3

84‘8
85.6

97.3
100.7

112.1
112.9

157.3
167.0

185.1
202.1

1120.0
1150.0

Small,

Coupled Mass

1.6
2.8
3.0
10.2

49.6
51.4
53.6
56.2
58.5

95.5
100.6

119.1
120.1

145.6
150.1

193.0
203.1

214 .4
217.8

908.0
928.0

Moderate-Size,

Lumped Mass

2.2
2.9
3.5
10.0

34.3
37.0
41.6
45.4
54.5

73.7
75.6

87.8
91.4

99.4
100.8

116.4
117.5

123.9
125.4

198.5
200.6



Computer Time In CPU-Seconds for GDR, Moderate~Size Model

SOL 3
DMAP
NO.

1 - 152
152
280
302
416

TABLE 2.

FMAX on

Modules 50

"Misc 39.5
DECOMP 21.3
DYCNTL 23.5
DYNREDU 93.0
READ 1.3

TOTAL * 288(144)

* Total calculated time In parenthesis.

See Figure 7 and Appendix B.
General ized coordinates used:

DYNRED, Hertz
100 200
40.0 40.2
21.8 22.0
25.8 24.2

202.5 650.4
6.3 46.0
499(438) 1172(1527)

35 -~ 50 Hz
78 - 100 Hz

161 - 200 Hz



TABLE 3.

Transient Analysis CPU Time, IBM 3084, Moderate-Size Model

CPU~Time Iin Seconds¥*

Direct - Formuletion Modal ¥*

Module 500 1000 1500 1500
To TRD1 95 98 99 636
TRD1%xx 1364(1192)  2673(2384) 4023(3575) 14(32)
Total time 1526 2838 4190 653

¥ Coupled equations; column headings are time steps
¥%* GDR, FMAX= 100 Hz, H-set: 47
¥%%¥ Calculated CPU-time in parenthesis (see Appendix B)



Appendix A
REAL EIGENVALUES AND MODAL TRANSIENT ANALYSIS

Introduction

Multidegree-of-freedom (MDOF) finite element models result in one
independent second order differential equation for each DOF having
mass (inertia) properties. Hence, direct transient analysis results
in solving N equations for displacement time behavior at each GRID.
These displacements may then be used to determine spatial and tem-
poral velocity and acceleration, element stress, etc. Rather
general damping is permissible with linear or nonlinear applied
loads (forces and enforced motion). MSC/NASTRAN has extensive
direct transient solution capability (3). This topic is not in-

cluded irn this appendix.

An alternative to direct transient analysis is modal transient
formulation. This technique requires that the analyst be familiar
with natural frequencies (eigenvalues), eigenvectors (or normal
modes), generalized coordinates, decoupled equations, and modal
superposition This topic has been treated thoroughly in a recent
textbook (2) suitable for senior engineering students and practicing
engineers. This text is the primary resource used by the author (in
addition to the MSC/NASTRAN Dynamic Handbook) in presenting an

introduction to modal transient analysis.

This appendix introduces real (undamped) eigenvalues, rigid body
motion, eigenvectors, generalized coordinates, generalized mass,
stiffness, damping, and force. Also, the well known eigenvector
orthogonality principle is proven with an example. Nonlinear ef-
fects are not considered. MSC/NASTRAN terminology will be used if
possible. Some matrix arithmetic knowledge is expected of the

reader (11).



Three DOF, Lumped Parameter Model: Eigenvalues and Eigenvectors

Figure Ala shows an undamped three DOF structure that is free to
translate as a rigid body along a supporting surface. Displacement
of each mass with respect to a reference plane is shown in the
figure. The system is expected to have one rigid body mode and two

elastic modes (since there are three masses and two springs).

Newton's law is used to derive the three equations of motion in
differential form (Figure Alb) and compacted into matrix form
(Figure Alc). More complicated systems would certainly use the
'principle of virtual displacements' or Lagrange's equations to

derive these equilibrium relationships.

The assumption that displacements vary sinusoidually with time for
each mass results in an algebraic eigenvalue relationship shown in
Figure Ald. Expanding the determinant of the Figure Ald relation-
ship about the first row results in the characteristic polynomial in
terms of lambda (which is circular frequency squared). The polyno-
mial may be easily factored into the three roots (O, 3/4, and 2)
shown in Figure Ale. These roots are called the eigenvalues of the

Figure Ala system.

The roots of the eigenvalue equation are next substituted in the
first and third equations of the relationship shown in Figure Ald.
This result is shown in Figure Alf, where the magnitude of Ul is
arbitrarily set to unity. The three DOF model eigenvectors
(relative vibratory displacements at each GRID for each natural
frequency) are shown in transposed form in Figure Alf. Finally the

eigenvectors are shown graphically in Figure Alg.

The zero frequency eigenvalue (and uniform translation eigenvector)
is called a rigid body mode and results from & singular stiffness
matrix (as shown below). MSC/NASTRAN uses the SUPORT card for
efficient calculation of these rigid body modes. Also MSC/NASTRAN
normally expects the eigenvectors to be normalized to MASS rather

than MAX as was done in Figure Al.



An MSC/NASTRAN analysis of the Figure Al model was executed using
SOL 3. The eigenvalues and eigenvectors agreed precisely with hand

derived results shown in Figure Al,

Modal Matrix, Generalized Coordinates, and Generslized Properties

A matrix of the three eigenvectors derived in Figure Alf may be
arranged in a modal matrix as shown in Figure A2a. This modal
matrix will have N rows (where N is model DOF) and have M columns
(where M is the number of eigenvectors being used). The Figure Al
model will be used to show that this modal matrix may be used to
introduce generalized coordinates, derive generalized mass and
stiffness, and show orthogonality of eigenvectors with respect to

mass.

Figure A2b shows the usual technique used in modal-formulétion
finite element transient analysis, where the motion at each GRID is
expressed in terms of the eigenvector and a generalized coordinate
for each frequency. Hence, if the temporal behavior of each
generalized coordinate is calculated, the Figure A2b relationship
may be used to determine displacement components (2long with

velocity and acceleration) at each GRID.

Figure A2c shows that the general equation of motion (with N repre-
senting nonlinear loads set to zero) may be multiplied by the
transpose of the modal matrix to get the useful result of a diagonal
generalized mass and generalized stiffness matrix as shown in Figure
A2c¢. Thus the equations of motion have been decoupled with respect

to mass and stiffness.

The MSC/NASTRAN analysis for the Figure Al model (using MAX
normalization) verified the results shown in Figure A2c. As ex-
pected the printed eigenvalue table showed generalized mass and
stiffness as here derived. Fach of the three values of lambda are
simply the ratio of generalized stiffness to generalized mass

(diagonal terms in Figure A2c.)




Figure A2d shows the resulting generalized damping and load from the
Figure A2c operation. The editor of Reference 3 cautions that any
material damping or damping elements (such as CVIS or CDAMPi)
destroys any possibility of having decoupled equations in
MSC/NASTRAN. Only uniform modal damping (TABDMP1) insures that the

generalized coordinate equations are decoupled.

Eigenvector Orthogonality

Any two unique frequency eigenvectors are said to be orthogonal with
respect to mass if the Figure A3a relationship is valid (2). Figure
A3b verifies this relationship for the Figure Al model. The eigen-

vectors are also orthogonal with respect to stiffness.

Conclusion

This appendix has shown a simple example problem illustrating eigen-
values, eigenvectors, generalized coordinates, generalized
properties, and orthogonality of eigenvectors as used in modal
formulations of MSC/NASTRAN. A model of about four or five DOF very
quickly shows the benefit of using the several eigenvalue extraction
techniques used in MSC/NASTRAN. References 3 and 4 should be con-
sulted by the reader interested in the mechanics of these eigenvalue

extraction techniques.
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a. Physical Arrangement

U1 + U1 - UZ +0 U3 =0

2 U2 - U1 + 2.5 U2 -1.5U,=20

3

3 U3 + 0 U1 - 1.5 U2 + 1.5 U3 =0

b. Equations of motion, differential form
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c. Equations of motion, metrix form
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or (=) -1 o | [u
f
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d. Eigenvalue Equation

FIGURE Al. Example Problem, 3 DOF System



¢ 1 -0 [(5/2 =2)) (3/2 - 3») - 9/4] - (3/2-3)) =0

or

). - - = [ = 3 = ) =
(3/4 =2)(2 -») = 0 ; 4 0, ’o 3/4, 74 = 2

where determinant is expanded about first row

e. Eigenvalue equation roots

Mode . First Eq* Third Eq* R
1 0 Ut - u2 =20 -1.5U2+1.5U3 =20 [1 1 1]
2 3/4 1/4 U1-U2= 0 -1.5U2 - .75U3 =0 [1 1/4 -1/2]
3 2 =-U =U2 =20 ‘-1.5U2-45U3=0 [T -1 1/3]

*Eigenvalue equation; Ul =1

f. Compute eigenvectors

e Node Ay = 3/4 \

g. Eigenvector graphic display

FIGURE Al. Exampl!e Problem, 3 DOF System (continued)
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a. Example (Flg. Ala) Modal, Mass, Stiffness Matrices
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b. Structure displacement and general ized coordinates
[¢1'IMICe] 63+ Lo]'EBICeT 18] + o1 IKILe T (2] = Lod (P 4
Lnul
11 10 o]l [t 1 1 5 0 0
61 IMCel=m=01 1/4-172] [0 2 o| |1 1/4-1]=]015/8 o
1 -1 /3 o o 3| L-t/21/3 Lo o 10/3
diagonal
R I I B B olft 1 1] (o o 0
Lo1'IKICed = [md = |1 174 =172|}-1 2.5 =1.5| |1 174 -1 | <0 45732 o0
1 -1 13/l o-1.5 1.5 1 -172173 o o 2003

dlagonal
NOTE: X1 = 0/5 =0 22 = (45/32)/(15/8) = 3/4 A3 = (20/3)/(10/3) = 2

c. Example general ized mass and stiffness

[¢]T[B][¢] (damping) [¢JT{PH) + N} (force) {N} - nonlinear

d. General ized damping and force

FIGURE A2. Generalized Properties for Example Problem



a. Eigenvector Orthogonal ity definition
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NOTE: Orthogonality with respect to stiffness also true.

b. Example probiem verification

FIGURE A3. Eigenvector Orthogonal Ity



Appendix B
MSC/NASTRAN COMPUTER TIMING FORMULAE

Introduction

MSC/NASTRAN documentation (8) provides extensive computer timing
formulae required by the dynamics analyst. A simplified formula for
GDR eigenvalue extraction computer time (1) has been found to be
quite accurate. However, the equation solution formulse are quite
vague. This appendix will present some actual data for transient
analysis equation solution of the moderate-size model described in

the text.

GDR Timing

Computer CPU time for GDR eigenvalue extraction is given as:

TGDR=M#*0*C**2 [1 + (16PS/MC) + (3Q/C) + (4 + 7P/M) (Q/C)*%2]

Seconds
where M = machine constant (0.92 microseconds for IBM 3084)
0] = o-set (model DOF after single arnd multipoint
constraints)
C = RMS bandwidth in DOF

PS/M = machine factor ratio (1.25 for IBM 3084)

P/M = machine factor ratio (0.9 for IBM 3084)

Q = generalized coordinates for GDR (DOF).
(Set to 1.5 times number of eigenvalues below
FMAX)

The first term gives CPU time for two static decompositions of the
o-set stiffness matrix. The other bracketed terms sum to about 0.5
for the usual case of Q/C about equal to 0.1 to 0.15. Hence, TGDR
is about equal to three static decompositions of the o-set stiffness

matrix.



Equation Solution

Reference 3 (page 5.5-7) states: 'The CPU time for direct transient
response can be estimated by combining the times for stiffness
matrix formation, mass matrix formation, matrix decomposition of the
dynamic matrix (see Section 4.6.2), and equation solution where the

number of right-—hand sides is equal to the number of time steps.'

The present author agrees that the direct transient solution time
depends on number of time steps (see Table 3, text). This table
gives an average time of 2.688 CPU seconds per time step for each of
the three direct transient solutions. (There are T+2 equations,
where T equals the number of time steps.) However, the equation

solution formula (in above defined notation) gives:
CPU time = 2*T*0*C*M.

Let T=1 (one time step). The moderate-size model (Figure 7,text) has
0= 5266 and C=82. M=0.92 microseconds for an IBM 3084 computer.
This gives a CPU time of 0.795, or about one third of the actual
2.688 CPU seconds required. Hence, a rough estimate of direct

transient solution (TRD1) CPU time is given as:
CPU time = 6*T*0*C*M.

This formuls is used in calculating estimated times shown in Table 3

(text).



