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MSC/NASTRAN Model Checkout

Abstract
This paper describes a procedure for systematically checking and verifying a
NASTRAN finite element model. Various methods and levels of model checkout
are used at the Jet Propulsion Laboratory (JPL) and all of them are combined
in this paper to ensure that the models are consistent, mathematically well-
conditioned, and documented. Some of the techniques presented are:

0 1G XYZ Gravity Loads (with guidelines for Epsilon, Max Ratio, and SPC

forces and moments)

o Stiffness Matrix Equilibrium Check

© Rigid Body Displacements

0 Modal Identification

o Thermal Test Cases
Examples from current projects at JPL, such as the Galileo spacecraft and the
Wide Field/Planetary Camera for the Space Telescope, will be utilized to

describe the implementation of these methods.
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NOMENCLATURE AND ACRONYMS

General

cG Center of Gravity

D Displacement

DOF Degree of Freedom

FEM Finite Element Model
FN Natural Frequency

G Gravitational Constant
KE Kinetic Energy

iii



NOMENCLATURE AND ACRONYMS (cont.)

NASTRAN Related

ALTER DMAP Instruction
ASET Analysis Set

AUTOSPC Single-Point Constraint Generator

DMAP Direct Matrix Abstraction Program
EFMASS Effective Mass
EIGR Eigenvalue Extraction Method

EPSILON Rigid Body Error Ratio

EQEXIN Table Correlating Internal and External Degrees of Freedom
FSET Unconstrained (Free) Structural Coordinates

GDR Generalized Dynamic Reduction

GRAV Gravitational Constant

GRDPNT Grid Point Used for Mass Properties Computation

KRBF Geometric Reaction Forces

MAX RATIO Ratio of Stiffness to Factor Diagonal

MPC Multi-Point Constaint
PARAM Parameter

RBAR Rigid Bar Element

RBE Rigid Body Element

SOL Solution Sequence

SPC Single-Point Constraint
TEMPD Temperature lLoading Card

iv



INTRODUCTION

This paper outlines a procedure for systematically checking and document-
ing a finite element model. Currently many models that are generated at JPL
are being transmitted to other agencies for subsequent analysis. Since these
models have had various levels of analytical validation and documentation,
this report combines various checkout procedures to ensure a uniform level of
validation and documentation such that the models will be consistent and
mathematically well-conditioned. These procedures, however, are not substi-
tutes for the test verification phase of analysis. They are intended to
remove modeling errors early in the design process, rather than during the
test updating phase which occurs well after the hardware has been built.

The detailed check programming statements refer to the MSC/NASTRAN
structural analysis program, but the overall checks are applicable to any

finite element program.

MODEL CHECKOUT PROCEDURE

Once the finite element model is completed and all documentation, such as
model schematics ("road maps") as well as material and geometric property
calculations, is updated to the final model version, the following series of
tests should be performed in order to validate the model. It is recommended
that these tests be run on the model and subsystem models during the

development stages as well.

Geometry Plots

Either the NASTRAN plotting package or other preprocessor graphics

package should be used to obtain visual images of the finite element model



from many views in such a way as to provide a clear representation of each
element in at least one view and to verify overall geometry and placement’of
elements. Figure 1 shows the Galileo spacecraft finite element model and
Figure 2 shows the Wide Field/Planetary Camera finite element model. A
"shrink option" should be used if possible to make sure all elements are
present (see Figure 3). This is particularly helpful when Bars or Beams are
used to model stringers along the edges of plate elements. Discontinuities

show up only with the shrink option.

Checkout Run RF24D32

A "checkout run" using the rigid format alter RF24D32 should be used to
check connectivity and duplicate element numbering. Any duplicate numbering
should be corrected so that errors with plot sets will not occur. The connec-
tivity table does not include MPC's or rigid elements (RBE1l, RBE2, RBE3, or
RBAR). The checkout run also supplies all grid locations in basic coordinates
and lists the lengths, areas, and volumes of all elements. Table 1 gives a
listing of the parameters used and Tables 2 through 9 give examples of the

output. These items can be useful for finding anomalies not apparent in plots.

Mass Distribution

PARAM GRDPNT uses the Grid Point Weight Generator, which gives the mass
(by direction), the CG, the moments of inertia, and the principal moments of
inertia and their direction cosines (see Table 10). Full use should be made
of this diagnostic tool to correlate the model with existing hardware or mass

properties calculations.



The Grid Point Weight Generator uses only the weight properties and
geometry to calculate mass properties. The resultant mass properties are the
rigid body mass properties. Note that PARAM WIMASS does not affect the GPWG

output - it multiplies the mass matrix lafir in the program.

1G XYZ Gravity Loading

Static gravity loading can be helpful in checking out various proper-
ties of finite element models. Displacements, element forces, and support
reactions (SPC forces) derived from 1G loading conditions provide a first
check on mass, stiffness, and determinacy of supports. Weight and CG can be
calculated from SPC forces which should also be compared to any applied loads
or weight. Load paths can also be assessed using the element forces.
Epsilon, Max Ratio, and SPC forces (at grids other than legitimate boundary
conditions) describe the overall "health" of the stiffness matrix (see
Tables 11 and 12).

Allowable values for these quantities are:

Epsilon* ¢ 1.0 x 107% (large model)

1.0 x 10~° (small model)
5
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Max Ratio <¢ 1.0 x 10t
SPC Forces (at internal points) ¢ 1.0 x 107° (model weight)
SPC Moments (at internal points) ¢ 1.0 x 10-3 (model weight) x

(unit length)

*Epsilon is machine dependent. The above data is for CDC 64-bit word.
Other machines should give smaller numbers (1.0 x 10—8 and 1.0 x 10_11).
Mechanisms or symmetry conditions may require reevaluation of SPC force

limits.



The lé'cases also provide a rough approximation of the frequency of the
first mode. This can be accomplished by using the displacement (D) at the CG
in the equation FN ~ %; JG/D.

If the model has no mass, forces and moments can be applied to generate
displacements, element, and SPC forces. The magnitude and point of applica-
tion of the forces should be representative of typical structural loading,
thereby allowing the énalyst a good "feel" for the size of displacements and
forces as in the 1G cases. It is also helpful to use Element Strain Energy and
Grid Point Force Balance with these runs. For jnformation on these see Refer-
ence 1.

The 1G case can easily be obtained through the GRAV card. This is

preferred over the inertia relief type method.

Equilibrium Check

Using solution 24 and the set of DMAP ALTERS shown in Table 13, an equi-
librium check can be run to further validate the stiffness matrix. This check
calculates the strain energy resulting from unit translations and rotations.
The KRBF matrix (see Table 14) is printed out and is a measure of the force
required for the "rigid" body displacements. All elements should be small,
€.Bes

Diagonal Translations ¢1.0 x 10-2

Diagonal Rotations <2.0 x 102

0ff-Diagonal Terms ¢2.0 x 107
Also printed is the matrix KRBFN, the forces at the grids normalized to a

maximum of 1.0 (see Table 15). As seen from Table 15 this check easily iden-

tifies which grids and DOF's are causing problems.



All SUPORT's and SPC's should be removed. Include the following PARAM's
in the bulk data: AUTOSPC, YES; EQEXIN, EQEXIN; GPL, GPL;>SEQOUT, l. The
output from the AUTOSPC processor should be reviewed carefully (see Table 16
for example of AUTOSPC). This table will £ nclude all degrees of freedom which
have no stiffness. Each degree of freedom should be checked and if correct

should be SPC'd; if it is not correct, then the model must be improved.

Thermal Test Cases

As a further check on connectivity and the stiffness matrix, an isother-
mal expansion.test case can be run with a statically determinate interface.
This is done on SOL 24 with a TEMPD for the load. All of the coefficients of
expansion should be set to the same value. This is useful for finding artifi-
cial stiffness imposed by rigid elements or bar offsets and is essential if
the model is to be used for thermal distortion work. Rigid elements will not
expand and may generate distortion forces and stresses unless the appropriate
degrees of freedom are released. Other potential problem areas are nonrec-
tangular shear panels and warped quadrilaterals (see Figure 4). These forces
and stresses will identify the problem areas that_need improving for thermal

analysis.

Rigid Body Displacement

If the model is primarily used for dynamic analysis, there is a DMAP
ALTER that performs an Equilibrium Check in Solution 3. In this case, the
unit translations and rotations are considered to be the rigid body displace-

ments of the structure in output coordinates about the SUPORT point. Strain



energy, which should be very small, is calculated and printed out. The DMAP
for this is shown in Table 17.

The strain energy, the Epsilons, and Max Ratio should also be checked at
this point, as they were for the static case (see Table 18).

This ALTER is used with a SUPORT card. The DOF supported must form a
determinate interface or high strain energy will result. The model displaée—
ments printed represent the displacements caused by moving a s;pport DOF one
unit while holding the other support DOF's fixed. The model displacements
should be checked for unit values (see Table 19).

The ALTERS to allow the rigid body displacements to be printed in the
model basic coordinate system rather than in the local grid displacement
system are shown in Table 20.

Other useful ALTERS may be included in the same runstream. Please note

that all ALTERS assume mass normalization on EIGR card.

Modal Analysis

One of the main uses of NASTRAN is dynamic analysis. There are several
diagnostic tools which can be used to further assess the integrity of the
model. These tools (effective mass, strain energy, kinetic energy, deformed
plots) are outlined in the following paragraphs.

The ALTERS to obtain the elastic modes are shown in Table 20. The two
major means of reducing the number of dynamic degrees of freedom in the modal
analysis are outlined below.

A major concern in dynamic analysis is the choice of an appropriate ASET

when using Guyan Reduction. The quality of the solution depends upon the



reduced mass matrix formed by this ASET. Will it retain sufficient mass in
correct distribution to adequately predict modeshapes and frequencies?

There are two rules of thumb to apply: (1) choose the largest masses and
(2) choose the masses that are likely to have the largest displacements (the
most energetic). The next step is to make a trial run and check the various
diagnostics.

Another way to perform the modal analysis (and choose an ASET, if desired)
is to use Generalized Dynamic Reduction. If this is done, the ALTERS 416 and
419 shown in Table 20 must be removed and the support point SPC'd. Although
the MER matrix is not calculated, the ALTERS for doing so are shown in
Table 21.

The results of a GDR run can be used to select an ASET for use in future
processing if desired (see Figure 5 for flow chart). If this is the case, the
DMAP ALTERS to calculate the kinetic energy (shown later) should be included
in the run, along with the ALTERS given iﬁ Table 21 for MER. A proven rule-
of-thumb for ASET selection is to include all DOF which have more than 2% of
the system KE for all major modes (determined by comparing EFMASS to the
system weight) and more than 5% for the other modes. One must be careful in
the case of assemblies with a fine mesh; although the whole assembly may be
moving in a mode, there may not be any individual DOF's with greater than 2%
of the system kinetic energy. This is usually evident when a mode has a
sizeable EFMASS, and either no terms with a large kinetic energy, or the terms
with noticeable kinetic energy do not account for the EFMASS of the mode. 1If
this is the case, then there is no substitute for common sense determination
of DOF which describe the subsystem motion.

Note also that this removes the "rigid body'" mode check f;om the run,

since the SUPORT card must be removed (unless the run is a free-free run).



MER - MREMER - MR - EFMASS*

An important diagnostic tool is the elastic-rigid coupling matrix (MER), a
triple product of the elastic modeshape matrix, the ASET Mass Matrix, and the
rigid body displacement matrix with respect to the interface. This N x 6
matrix gives the square root of the effective mass in each retained mode so
that the product of each element of this matrix with itself gives the effective
mass contained in that mode in the associated direction. These values are in
EFMASS. This matrix can be used to determine which modes are energetic in
terms of interface loading. Table 22 shows a sample MER matrix taken from
Reference 3. The elements of this matrix have been squared and units converted
to give recognizable weight units.

The product of MER with itself transposed (MREMER) gives the total effec-
tive mass retained using the ASET DOF number of modes. The diagonal of MREMER
is compared with that of the rigid mass matrix (MR) to determine if sufficient
mass is contained in the selected modes to consider the model valid. The gen-—
eration of the MR matrix also makes use of the stiffness matrix (see Figure 6).
The MR matrix should also be compared to the mass properties of the Grid Point
Weight Generator. The inertias are calculated about the SUPORT grid and,
unless this is the point selected with PARAM‘GRDPNT, the inertias will not
agree. A typical allowable is a 5% loss of mass. This comparison can then be
used to modify the choice of ASET DOF or to increase the number of modes.

This diagonal is shown as the "TOTAL" line of Table 22 and is compared against

the full model weight.

*A complete technical description of these terms can be found in Reference 2.



To calculate the MER and MREMER and to print them out along with the MR,
one should use the DMAP statements shown in Tablé 23 (also given in Tables 20
and 21) when there is a SUPORT card in the bulk data. The model must be *cant-
ilevered” from the SUPORT; that is, the SUPORT DOF are the only constraints
preventing rigid-body motion. The G factor 386.0886 in/sec2 is in the ALTER.

If another value is desired, it must be substituted.

Kinetic and Strain Energy

Tables 21 and 23 includes the ALTERS for printing the kinetic energy dis-
tribution as a fraction of the total, in the form of eigenvectors, for each
mode (ALTER 455). This information is useful for showing the energy distribu-

tion within a mode, whereas the MER matrix is useful for determining which

mode is energetic. The various grids within a model can be grouped together
and the energy then given by subsystem. Table 24 shows a sample taken from
Reference 3. Examination of Tables 22 and 24 show that for modes 1 and 2 the
PWS subsystem has 100% of the KE, but in terms of effective mass it is negli-
gible (the Plasma Wave Subsystem (PWS) is a very light antenna). In contrast,
the probe in mode 5 has not only the predominant percent KE (Table 24) but mode
5 is an energetic mode (Table 20).

Element strain energy can also be used to determine which elastic elements
are participating within a given mode. These two diagnostic tools can help
isolate a weak or very flexible area of the model which may only be a modeling
error.,

The whole package is intended for use with SOLUTION 3. The model must
have a determinate support point without any SPC's to fix the base. The ALTERS

of Tables 17 and 23 are included in their entirety in Table 20.



Deformed Plots

Another diagnostic tool is plotting. Deformed geometry plots, the eigen-—
vector output, and MER help to identify modeshapes and classify them. Plots
will also highlight excessive relative deflections that point to stiffness
matrix problems.

Information from these diagnostics will feed back to both the stiffness
and mass matrices and the ASET degrees of freedom. In only a few iterations
all mass and stiffness problems can be rectified and the model will be a real-
istic representation of the true structure.

The quality of the above checks depends on the quality of ASET chosen. It
is good practice to make at least one run using Generalized Dynamic Reduction
and to verify the model by comparing the resulting modes to those obtained
using the ASET. If the two runs are not comparable, the GDR run should be used
to select an ASET. The inclusion of all terms with significant KE usually
gives a good ASET, but since large, stiff assemblies might not have large

energy at individual grids, common sense should also be used.

DOCUMENTATION REQUIREMENTS

To avoid costly delays when a job is switched from one engineer to
another and to make the finite element models more visible or accessible to
all concerned, documentation should be maintained through timely performance
and periodic updates. -The items below constitute a set of information for

describing a finite element model.
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Model Description

Pictures or drawings of real and/or proposed hardware should be included
to provide a good background and visual reference for the model. Written
descriptions and an overview of the function of the hardware are useful and
highlight important features that will affect modeling philosophy.

An important feature of the model description section should be the road
maps. These pictorial representations of the model should be approximately to
scale (and noted where not) and have grids and elements labeled. °‘Coordinate
axes should be included on the drawing, and surrounding structure should be
phantomed in to show the relative location of the model. In some cases it is
also important to include MPC's, rigid elements, element offsets, mass points
and plate orientations on the road maps.

Geometry plots may be used as road maps if they are sufficiently clear
and well-labeled. In any case, plots should be included to verify the
geometry and element placement.

All calculations corresponding to geometry and element properties should
be available for reference.

Also included should be written descriptions of the numbering schemes for
grids and elements, numbers of elements by type, and number of static (FSET)
and dynamic (ASET) degrees of freedom. The type of units used should be
specified and all coordinat ' ‘stems given in relation to the basic and other
global systems. A model summary table showing the pertinent model parameters
(pumber of grids, finite elements by type, mass DOF, static DOF, etc.) should
be provided. A sample of such a summary taken from Reference 3 is shown in

Table 25.

11



The interface (if any) of the model to other portions of structures must
be described in detail. If necessary, a special road map should be made show—
ing an enlargement around the interface area. This must be done if there are

multiple coordinate systems, rigid elements, and/or element offsets involved.

Mass Distribution

The final mass matrix from the Grid Point Weight Generator should be in-
cluded. It should be compared with measured or calculated properties and dif-

ferences noted and explained.

Model Checkout Procedure and Results

Applicable model checks should be performed and the results recorded.

Model Version and Residency

The versions of the model should be specified and dated. Comment or
title/subtitle cards can be used to accomplish this. The model report should
contain the location of the model file and the physical printout associated

with the various accomplished ruus.

CONCLUSION

The foregoing paragraphs describe a means of checking and documenting a
mathematical model to ensure its numerical consistency and conditioning. The
reader is referred to References 3 and 4 for a comprehensive example of such

documentation. The following comments are taken in part from References 5

and 6.

12



There is no single checklist that will ensure a complete check of a
comprehensive finite element model. There is no substitute for actual test
correlation with the model nor is there a substitute for the analyst's engi-
neering interpretation of the output and one's intuition. "Result prediction,”
which is determining gross results before the analysis is even attempted, can
be used to good advantage. Simple load paths, frequency of equivalent simple
beam/mass systems, etc., can be used to remove redundancies and predict the
results. In fact this must be accomplished to some degree to size the model
initially. This will also provide baseline data, and the effects of finer
modeling will then be known.

Relative to preparation of the model, the following are a few suggestions
for eliminating or reducing modeling problems.

o Start with simple models and then:

- Refine with stick or beam models;

- Use RBE2's and RBE3's where they will simplify;

- Simplify modeling offsets and local modeling detail;
- Ignore minor discontinuities.

Further refinement after this initiallmodeling should yield relatively
small changes in the results.

0 Do not rely on moment capability of thin plates and long, thin axial

members to render the model kinematically stable.

0 Make an initial run with membrane-only properties and pinned ended

bars, and check for irregularities.

o Avoid use of AUTOSPC in the final model.

13



The post analysis assessment should include a check of the physical sig-
nificance of the loads and of the load paths. Mere connection of members does
not constitute a load path. Offsets whose moments are not properly accounted
for may render soft a very stiff load path. Also, large moments in relatively
weak bending members or plates may indicate modeling problems.

Stress analysis should be performed at the detail part level with the
loads from the model. The use'of element stresses directly from the output of
the model requires detailed review in most cases. In fact, model .properties
may be intentionally different from the actual hardware to obtain correct load
distributions and to match test data or dynamic characteristics. Effective
ghicknesses or reduced bending properties may have been used to reflect panel
cutouts or partial beam end fixity. In this event the FEM loads should be used
with the actual drawing or as-built dimensions for detail stress analysis.

This piece-part assessment ensures a check and balance of the FEM and the
stress distributions visualized and treated by the element selection. Also the
source of the components of stress are known, that is, whether the predominant
stress component is due to bending or axial loads. Load transformation
matrices are useful for isolating critical design conditions but are not neces-
sarily a sufficient basis for computing the margin of safety.

An area where an underestimation of load could occur is the local response
of small masses during a dynamic analysis. These should be addressed in the
detail stress analysis with both the model predictions and an alternate loading
such as a specified loading condition. For the model to give correct loads for
the local response of a small mass, one needs all of the following:

0 Mass must be represented by enough mass points to characterize the

critical local mode {a single-point mass may not be sufficient).
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Mass must be supported by proper elastic elements to represent the
local mode (RBE2 or RBE3 may not be sufficient).

Mass must be in the ASET.

Model and all analysis (input spectra, etc.) must be carried beyond

this local critical mode (as far as frequency is concerned).
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FIGURE 1 :
GALILEO FINITE ELEMENT MODEL
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FIGURE 2
WIDE FIELD/PLANETARY CAMERA FINITE ELEMENT MODEL
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A. SHEARS AND BARS, NO SHRINK

-B. BARS REGULAR SIZE, SHEARS SHRUNK

C. BARS AND SHEARS BOTH SHRUNK

FIGURE 3
NASTRAN SHRINK OPTION
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FIGURE 4
PROBLEM AREAS FOR THERMAL TEST CASE
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FIGURE 5
ASET SELECTION FLOW CHART

F-5



S301HLVI SSYIN 40 LNINdOT3A3Q

9 34N9I4
baw], [eaw] o=
30 |
LHOIIM TYCOW 2
NOILVINNYL
YAOW
0,24S
W SSYW

F-6

(ONINOIL

-1NOD T11}
SSINHILS | —~ [OMd9]




TABLE 1

Check Out Run

$ BEGINNING OF RF ALTER 24$32
R E R R R R R T

PP PPN PR AR AR RPN N

THE

CHECK INPUT DATA

10 DEC 1979

CHECK CONTROL INPUT

10 DEC 1979 + 4+ + +

RIGID FORMAT 24

CASE CONTROL DECK THAT WILL BE USED IN PRODUCTION RUN.

UNDEFORMED PLOTS MAY BE REQUESTED INCLUDING PROPERTY IDS
AND SPC POINTS

BULK DATA INPUT

COMPLETE BULK DATA DECK TO

OUTPUT FOR-
1. GPL - SET
2. EQEXIN ~ SET
3. GPDT - SET
4, CSTM - SET
5. BGPDT - SET
6. MGG - SET
7. EIT - SET
8. GPECT - SET
CONNECTED TO
9. PROUT - SET
ELEMENT IDS.
10. EST -- SET

11.
12.

THE FOLLOWING PARAMETERS MUST BE

PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
GRIDS.

BE SUBMITTED FOR PRODUCTION RUN
SET TO THE INDICATED VALUES TO OBTAIN

GPL TO GPL
EQEXIN TO EQEXIN

GPDT TO GPDT

CSTM TO CSTM

BGPDT TO BGPDT

PRTMGG TO +1

GPTT TO GPTIT

GPECT TO +1 TO OBTAIN LIST OF ELEMENTS

TO POSITIVE VALUE TO OBTAIN SORTED LIST OF

TO POSITIVE VALUE TO OBTAIN LENGTHS, AREAS,
OR VOLUMES OF ELEMENTS.

PG ~— SET PRTPG=+1 TO PRINT THE LOAD VECTOR MATRIX

A SUMMATION OF LOAD IN BASIC WILL AUTOMATICALLY BE PRINTED

ITEMS CHECKED INCLUDE ~ GRID CONNECTION AND PROPERTY CARDS, MASS
PROPERTIES OF STRUCTURE, LOADS, TEMPERATURES AND CONSTRAINTS

AS WELL AS SOME GEOMETRY AND MATERIAL PROPERTIES

FOR EACH SUBCASE IN *LL BOUNDARY CONDITIONS.

GRID POINT SINGULARITIES

THE ITEMS NOT CHECKED IN..UDE ~ GEOMETRY, MATERIAL PROPERTIES AND

NOTES::

Output from the Grid Point Weight Generator is recomsiended.
Set PARAM, GRDPNT point to a positive integer. The value of
the integer indicates the grid point to be used as the refer-
If the integer is zero or an undefined grid, the
origin of the basic coordinate system is the

reference point.

ence point.
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TABLE 13

Equilibrium Check

EXECUTIVE CONTROL DECK

ID WFPC,MODAL

APP DISPLACEMENT

SOL 24

DIAG 6,14

TIME 30

$

$ RESEQUENCE AND PRINT USET TABLES
$

ALTER 8
SEQP  GEOM1,GEOM2,GEOM4, /GEOM1Q,MATPARM/C,Y,SEQOUT=0/V,Y ,NENSEQ=+3//
Cc,Y,SUPER= 0/C,Y,FACTOR=10000/C,Y,MPCX=0/C,Y,START=0 $

EQUIV  GEOM1Q,GEOM1/ALWAYS $

ALTER 99

TABPRT  USET,EQEXIN//USET/V,Y,USETPRT=0/V,Y,USETSEL=0 $
ALTER 110

$3

$$4$ EQUILIBRIUM CHECK OF FSET STIFFNESS MATRIX

$3

$3

VECPLOT, ,BGPDT,EQEXIN,CSTM,,/RBGLOBAL/V,Y,MPFPNT=0//$ $

VEC USET/VRB/G/F/COMP $

PARTN RBGLOBAL,VRB,/RBFSET,,,/+l $

TRNSP RBFSET/RBTF $

MPYAD KFF,RBTF,/KRB/ $

MPYAD RBFSET,KRB,/KRBF/ $

NORM KRB/KRBFN/ $

MATPRN KRBF// $

MATGPR GPL,USET,SIL,KRBFN//F///1.-2 $ This prints only terms >1% of the
maximum (all scaled such that the maximum is 1.0).

EXIT $

ENDALTER

CEND

BULK DATA DECK

PARAM AUTOSPC YES
PARAM EQEXIN - EQEXIN
PARAM  GPL GPL
PARAM GRDPNT n
PARAM SEQOUT 1

NOTES: 1. Remove SUPORT and SPC cards from bulk data.
2. ASET cards should not be used.
3. See Reference 5 for use of PARAM GRDPNT.
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TABLE 17

Rigid Body Displacements

ALTER 251
$ THE NUMBER 6 ON THE NEXT TWO CARDS IS THE NUMBER OF SUPORT
$ DOF :

MATGEN /IDENT/1/6/ $

MATGEN /RBM/4/6/3/0/1/1/3/0/6/ $

UMERGE USET,DM, IDENT/DEAR1/A/L/R $

SDR1 USET, ,DEAR1, ,,GO,GM, ,KFS, ,/DEAR, ,DEARQG/1/REIG $

MATPRN DM,MR,,,// $

LAMX RBM, /1M §

$ THE FOLLOWING CARDS ARE USED TO CALCULATE DISPLACEMENTS,

$ ELEMENT STRESSES, AND FORCES

SDR2 CASECC,CSTM,MPT,DIT, EQEXIN, SIL,ETT, ,BGPDT, LM, DEARQG , DEAR, EST,
XYCDB/DEAROPG1,DEAROQG1,0DEAR , DEAROES1 , DEAROEF1 , PDEAR/REIG $

OFP ODEAR,DEAROPGI,DEAROQGI,DEAROEFI,DEAROESI//S,N,CARDNO $
$

$ THE FOLLOWING CARDS FIND THE ELEMENT STRAIN ENERGY (IF
$ REQUESTED BY CASE CONTROL)

SETVAL ///////1/1///V,N,SOLTYPE/REIC $

COND NOESED,GPFDR $

COND NOESED1,ESE $

GPFDR  CASECC,DEAR,KELM,KDICT,ECT,EQEXIN,GPECT, , ,BGPDT,SIL,CSTM/
DONRGY,DOGPFB1/SOLTYPE/C,Y,TINY $

OFP DONRGY ,DOGPFB1//S ,N,CARDNO $

LABEL  NOESED $

LABEL NOESED1 $

Notes: 1. If this alter is being used for a check run, the final cards of
the alter should be:

JUMP FINIS $
ENDALTER

Otherwise the job will continue and perform a free-free eigen-
solution. Refer to Section on Modal Analysis and Table 20 for
cantilever modes.

2. The case control should include commands for any desired output
for the rigid-body modes.

(ex. DISP = ALL)

3. SUPORT card with the DOF supported by a determinate interface must
be used.
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TABLE 20

Alters To Be Used In NASTRAN Solution 3

$

$

$

$ ALTERS TO GENERATE RIGID BODY MODES - WORKS FOR 6 - DOF ON ONE

$ GRID SUPPORTED - GENERATES RIGID BODY MODES ABOUT THAT

$ POINT - NOTE....IF AN INDETERMINATE INTERFACE IS BEING

$ USED THEN THE ALTER CREATES THE "CONSTRAINT' MODES TO BE

$ USED IN COMPONENT MODAL SYNTHESIS USING THE CRAIG-BAMPTON
$ METHOD

ALTER 251

$ THE NUMBER 6 ON THE NEXT 2 CARDS IS THE NUMBER OF SUPORT D.O.F.
MATGEN /IDENT/1/6/ $

MATGEN /RBM/4/6/3/0/1/1/3/0/6/ $

UMERGE USET,DM, IDENT/DEAR1/A/L/R $

SDR1  USET,,DFAR1,,,G0,GM,,KFS,,/DEAR, ,DEARQG/1/REIG $

MATPRN DM,MR,,,// $

$

$ FOLLOWING LINES ADDED TO CONVERT 'RIGID BODY' MODES TO

BASIC COORDINATES - ONLY FOR INFORMATION AND CHECKING -
THAT IS IF CHECKING THE RIGID BODY MODES FOR CONSTRAINTS,
IT IS USUALLY EASIER TO LOOK AT THEM IN THE BASIC COORDINATE
SYSTEM, RATHER THAN IN THE GLOBAL (OUTPUT) COORDINATES.

- H - O N

$VECPLOT DEAR1,BGPDT,EQEXIN,CSTM,CASECC,/DEARBAS/0/0/1 $

LAMX  RBM,/IM $

$SDR2  CASECC,CSTM,MPT,DIT,EQEXIN,SIL,,,BGPDT,LM, ,DEARBAS,,/
$ , ,ODEARBAS,,,/REIG $

$0FP ODEARBAS, ,,,//S,N,CARDNO $

$
$ END OF ALTER TO PRINT DEAR IN BASIC COORD
$
$$
$$ FOLLOWING CARDS FOR DEAR IN OUTPUT COORD
$$ THESE ARE THE RIGID BODY - OR INTERFACE - MODES IN OUTPUT
$$ COORDINATES. THE ALTERS WILL ALSO CALCULATE THE ELEMENT
$$ FORCES, STRESS, AND STRAIN ENERGY IF REQUESTED IN THE CASE
$$ CONTROL. THESE ARE USEFUL IN FINDING ANY CONSTRAINTS IN THE
$$ MODEL IN THE RIGID BODY MODES AND ARE PART OF THE LOAD
:$ TRANSFORM MATRIX IN COMPONENT MODAL SYNTHESIS

$ .

$ LAMX RBM,/LM $

$ SDR2  CASECC,CSTM,MPT,DIT,EQEXIN,SIL,,,BGPDT,LM, ,DEAR,,/

$ , sODEAR,,,/REIG $

$$ THE FOLLOWING CARD IS USED TO PRINT OUT THE RIGID BODY (OR
$3$ INTERFACE) MODES

:$OFP ODEAR,,,,//S,N,CARDNO $

(START 1)

(END 1)

(START 2)

Notes: 1. Use mass normalization on the EIGR card.
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TABLE 20 (Continued)

Alters To Be Used In NASTRAN Solution 3

$4$ FOLLOWING 3 CARDS USED TO CALCULATE THE ELEMENT STRESSES

$33 AND FORCES ARE DESIRED FOR 'RIGID-BODY' (INTERFACE)
$3$ MODES.
$33

SDR2  CASECC,CSTM,MPT,DIT,EQEXIN,SIL,EIT, ,BGPDT, LM, DEARQG,DEAR,EST,
XYCDB/DEAROPG1,DEAROQG1,0DEAR ,DEAROES1 ,DEAROEF1 , PDEAR/REIC $

OFP ODEAR,DEAROPG1,DEAROQG1 ,DEAROEF1 ,DEAROES1//S,N,CARDNO $

$ THE FOLLOWING CARDS FIND THE ELEMENT STRAIN ENERGY (IF REQUESTED)

$ FOR THE RIGID BODY (INTERFACE) MODES

SETVAL  //////1/////V,N,SOLTYPE/REIG $

COND NOESED,GPFDR $

COND NOESED1,ESE $

GPFDR CASECC,DEAR,KELM,KDICT,ECT,EQEXIN,GPECT, , ,BGPDT,

SIL,CSTM/DONRGY,DOGPFB1/SOLTYPE/C,Y,TINY $

$ THE FOLLOWING CARD PRINTS THE ELEMENT STRAIN ENERGY FOR THE

$ RIGID BODY (INTERFACE) MODES.

OFP DONRGY,DOGPFB1//S,N,CARDNO $

. LABEL NOESED $

LABEL NOESED1 $

$44

$38 END OF CARDS TO PRINT ELEMENT FORCES AND STRESSES

$3%

$3

$$ END OF ALTER TO PRINT DEAR IN OUTPUT COORD

$3

ALTER 416,416

$ PERFORM CANTILEVERED MODAL ANALYSIS - THE SUPORT D.O.F. ARE

$ CONSTRAINED AND THE ELASTIC ('CONSTRAINED') MODES ARE

$ CALCULATED

READ  KLL,MLL,, ,EED, ,CASECC/LAMA,PHIL,MI,OEIGS/C,N,MODES/S,N,NEIGV $

ALTER 419 :

$ THE FOLLOWING CARDS CALCULATE THE 'MER' (ELASTIC-RIGID) MATRIX

$ THIS MATRIX CAN BE USED IN THE CASE OF A DETERMINATE NUMBER

$ OF SUPORT D.0.F. TO FIND THE MODAL MASS

$

UMERGE USET,PHIL,/PHIX/V,N,MAJOR=A/V,N,SUBO=L/V,N,SUB1=R $

MPYAD MLL,DM,MLR/TMP/C,N,0/C,N,1/C,N,1/C,N,1 $

MPYAD PHIL,TMP,/MER/C,N,1/C,N,1/C,N,0/C,N,1 $

MPYAD MER,MER,/MREMER/1//// §

MER/MERT $
MER/MERT1 $

THE FOLLOWING CARDS FIND THE 'EFMASS' OR EFFECTIVE MODAL MASS
MATRIX. IN THE CASE OF A DETERMINATE INTERFACE THIS MATRIX
REPRESENTS THE AMOUNT OF THE STRUCTURE'S TOTAL WEIGHT WHICH
IS ACTIVE IN EACH MODE. THE TOTAL OF THE TERMS GIVES AN IDEA
OF HOW WELL THE SYSTEM IS DEFINED BY THE NUMBER OF MODES
SELECTED. THE FACTOR OF 386.0886 IS USED TO SCALE THE VALUES
TO WEIGHT. THIS VALUE SHOULD BE CHANGED FOR DIFFERENT UNITS.

wn wn
- -

(START 3)

(END 3)

(END 2)
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TABLE 20 (Continued)

Alters To Be Used In NASTRAN Solution 3

ADD MERT,MERT1/EFMASS/(386.0886,0.)//C,Y,0PT=1 §
$ THE FOLLOWING CARD PRINTS THE MER,MR EFMASS AND MREMER MATRICES.

$ IN THE CASE OF A DETERMINATE INTERFACE, THE MERMRE MATRIX IS
$ THE AMOUNT OF THE RIGID BODY (MR) MASS MATRIX WHICH IS IN THE
$ MODES SELECTED.

MATPRN MER,MR,EFMASS,MREMER,// $

$

$ ALTER TO CALCULATE PERCENT ENERGY AT DISP SET FOR ALL MODES (START 4)
$ THIS WILL CALCULATE THE KINETIC ENERGY AT ALL MASS D.O.F. ‘
$ FOR THE MODES FOUND. THE VALUES ARE ALL SCALED SUCH THAT
$ THE SUM OF ALL THE TERMS FOR ANY MODE WILL ADD UP TO 1.0.
$ NOTE THAT THERE IS A FILTER OF .01 OR 1% APPLIED TO THE
$ VALUES BEFORE THEY ARE PRINTED OUT. THE OUTPUT IS IN THE
$ FORM OF AN EIGENVECTOR, EXCEPT THERE ARE MANY 0.0 TERMS
$ DUE TO THE FILTER AND POINTS WHICH HAVE NO MASS. THIS
$ MAKES THIS AN EFFECTIVE WAY TO IDENTIFY THE MODES.
ALTER 455
MPYAD UGV,MGG,/PHITM/1//// $
TRNSP PHITM/PHITMT $
ADD PHITMT,UGV/ENERG///C,Y,0PT=1 $ ENERG=INTERNAL SORT
MATMOD ENERG,,,,,/ENERG1,/2////.01 $ TO REMOVE TERMS < 1%
SDR2  CASECC,CSTM,MPT,DIT,EQEXIN,SIL,,,BGPDT,LAMA, ,ENERGL,,/
, ,ENERGY, , ,PENERGY/REIG $
OFP ENERGY,,,,//S,N,CARDNO $

$ .

$ FOLLOWING ALTERS TO PLOT 'ENERGY' (START 5)
$ THESE ARE EXPERIMENTAL AND NOT VERIFIED AS YET. THEY

$ ARE SUPPOSED TO PLOT THE ENERGY VALUES AS IF THEY

$ WERE A MODE SHAPE. THERE HAS TO BE PLOT CASE CONTROL. I

$ RECOMMEND A VECTOR PLOT OF THE DISPLACEMENTS.

$ALTER 480,480

$GPFDR CASEXX,ENERGY,KELM,KDICT,ECT,EQEXIN,GPECT,PG1,QG,BGPDT,SIL,CSTM,

$ VELEM/ONRGY1,0GPFB1/SOLTYPE/C,Y,TINY $

$ALTER 500,500

$PLOT PLTPAP,GPSETP,ELSETP,CASEXX,BGPDT,EQEXIN,SIL,PENERGY,PENERGY,

$ GPECT,0ES1/PLOTX2/DSIL/LUSET/JUMPPLOT/PLTFLG/S,N,PFILE §

$

$ END OF ALTER TO PLOT ENERGY (END 5)
$

$

$ END OF ALTER TO CALCULATE ENERGY AT DISP SET (END 4)
$

ENDALTER

$

$

$ MLS DELIVERABLE MODEL - DYNAMICS RUN WITH FIXED INTERFACE D.O.F.

$
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TABLE 21

Alters To Be Used In NASTRAN Solution 3

SOL 3
TIME 100
$

$ NASTRAN ALTERS TO CALCULATE EFFECTIVE MASS AND THE ENERGY DISTRIBUTION OF A

$ MODE

L X X7 Y

ALTER 449
$

WRITTEN AT J.P.L.
BY TED ROSE

$ ALTER TO CALCULATE EFFECTIVE MASS OF THE MODES
VECPLOT ,,BGPDT,EQEXIN,CSTM, ,/RBMODES/V,Y ,MPFPNT=0//4 $
TRNSP RBMODES/RBMTRN $

SMPYAD UGV,MGG,RBMIRN,,,/MER/3////-1///]/ $

MPYAD MER,MER,/MREMER/1//// $

TRNSP MER/MERT $

TRNSP MER/MERT1 $

ADD MERT,MERT1/EFMASS/(386.0886,0.)//C,Y,0PT=1 $
MATPRN MER,MR,EFMASS,MREMER,// $

$

$ ALTER TO CALCULATE PERCENT ENERGY AT DISP SET FOR ALL NODES (START 4)

ALTER 455

MPYAD UGV,MGG,/PHITM/1//// $

TRNSP PHITM/PHITMT $

ADD PHITMT,UGV/ENERG///C,Y,0PT=1 $ ENERG=INTERNAL SORT

MATMOD ENERG,,,,,/ENERG1,/2////.0025 $ TO REMOVE TERMS ¢ .25%

SDR2 CASECC,CSTM,MPT,DIT,EQEXIN,SIL,,,BGPDT,LAMA,,ENERGI,,/
s »ENERGY, , ,PENERGY/REIG $

$0FP ENERGY,,,,//S,N,CARDNO $

MATGPR GPL,USET,SIL,ENERG//G///1.-2 §

ENDALTER

Notes: 1.

2.

Use mass normalization on EIGR card.

The above ALTER package works with or without a SUPORT card.
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TABLE 22

Calileo Spacecraft Baseline Model
Modal Weight and Inertia (Lb, Lb-in?)

Mode X Y A RX RY R2

1 0 0 0 2.5E+00 2.3E+03 8.3E+01
2 0 0 1 2.3E+03 3.4E-01 5.0E-02
3 1188 479 0 7.9E+06 2.1E+07 2.2E+03
4 489 1144 0 2.0E+07 8.7E+06 6.2E+02
5 2 1888 3 8.2E+06 1.2E+04 1.0E+02
6 1097 5 0 1.7E+05 5.7E+06 9.2E+05
7 1007 10 0 3.1E+05 5.5E+06 3.2E+05
8 1 296 0 5.2E+06 8.9E+03 2.1E+05
9 45 3 0 9.4E+04 2.4E+05 1.2E+05
10 11 554 33 3.5E+06 5.3E+04 1.5E+02
11 533 0 31 2.0E+02 3.2E+06 2.8E+04
12 5 6 221 3.5E+04 2.9E+04 9.0E+05
13 41 25 770 1.1E+05 1.9E+05 4 ,0E+05
14 3 29 84 1.8E+05 3.5E+04 7.0E+05
15 9 0 7 7.9E+02 9.2E+04 5.2E+05
16 0 24 6 3.3E+04 3.4E402 1.4E+04
17 2 0 63 3.9E+04 4 ,6E+03 3.6E+03
18 50 86 1 6.9E+04 7.7E+04 6.1E+05
19 2 0 35 2.8E+04 3.4E+03 1.1E+04
20 27 196 0 1.6E+05 3.4E+04 3.8E+05
21 55 6 1 2.4E+03 7.3E+04 7.8E+03
22 15 51 40 4 . 6E+04 2.9E+04 1.2E+04
23 6 19 3055 2.2E+04 2.6E+04 6.5E+04
24 100 0 479 4,3E404 2.9E+05 1.2E+05
25 8 15 5 1.0E+04 2.5E+04 1.4E+04
26 157 7 15 3.6E+03 2.2E+05 5.2E4+03
27 1 1 149 3.1E+04 1.8E+03 1.5E+04
28 21 1 30 7.0E+04 2.8E+04 1.5E+04
29 0 1 0 6.6E+03 1.6E+03 5.0E+00
30 10 1 0 1.2E+03 1.2E+404 9.0E+03
31 71 138 9 4 ,2E+05 1.3E+05 7.0E+03
32 67 5 0 2.6E+04 5.3E+04 1.6E+02
33 22 38 20 8.9E+04 6.7E+04 3.8E+02
34 2 47 6 1.3E+03 4 ,2E+04 3.1E+01
35 67 49 1 8.2E+04 2.0E+05 2.2E+02
36 0 0 0 1.5E+02 1.4E+01 1.4E+01
37 0 0 0 3.5E+02 4.1E+02 1.2E+02
38 0 10 0 5.4E+04 2.7E+04 3.0E+02
39 13 1 6 4,.7E403 8.6E+03 1.8E+03
40 6 22 4] 1.5E+03 1.8E+03 1.8E+04
41 7 2 8 2.3E+01 3.4E+03 8.7E+03
42 12 11 41 4.9E+04 1.4E+04 5.6E+03
43 0 8 1 8.9E+03 3.6E+01 1.9E+04
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TABLE 22 (Continued)

Galileo Spacecraft Baseline Model
Modal Weight and Inertia (Lb, Lb-in2)

Mode X Y z ¢ KX RY RZ
44 0 3 -8 1.4E+04 1.2E+03 2.9E+04
45 0 0 49 1.3E+04 4.1E+01 6.7E+03
46 9 29 0 1.7E+04 2.2E+04 5.3E+03
47 1 0 4 1.6E+03 6.2E-01 4,.9E+03
48 0 2 13 1.9E+04 5.0E+02 4.1E+03
49 4 3 66 1.2E+04 1.8E+04 1.7E+04
50 0 0 4 1.0E+03 6.7E+02 6.1E+02
51 0 18 0 1.6E+04 6.2E+03 3.7E-02
52 1 4 3 1.8E+04 8.9E+02 4.6E+02
53 2 7 1 2.6E+04 4.1E+03 4.2E+02
54 0 0 1 2.6E+02 7.5E+03 8.3E+02
55 14 3 0 1.4E+04 8.4E+04 2.5E+02
56 0 6 0 7.5E+03 9.3E+03 2.8E+03
57 9 14 1 1.1E+04 1.3E+03 3.5E+02
58 0 0 2 1.8E+03 2.6E+03 4 ,.6E+03
59 27 15 0 3.8E+04 3.6E+04 8.4E+03
60 1 25 4 6.LE+04 6.5E+03 3.6E+03
61 42 12 3 3.7E+04 6.8E+04 9.1E+03
62 15 11 0 1.5E+04 2.6E+04 3.3E+04
63 .0 1 0 1.4E+03 3.8E+03 2.8E+00
64 31 11 0 3.5E403 6.6E+04 1.2E+05
65 3 1 1 1.0E+02 6.9E+02 2.1E+04
66 0 0 0 6.6E+02 3.4E+01 1.5E+03
67 2 0 4 4.5E+02 1.3E+04 1.4E+04
68 3 3 0 3.4E+03 9.3E+02 1.7E+03
69 0 0 2 4.1E-01 2.5E+02 8.1E+01
70 0 8 0 4.1E+04 4,7E+01 1.0E+04

TOTAL: 5316 5355 5287 4 .69E+07 4.61E+07 5.76E+06

RIGID 5591 5591 5591 4 ,.74E+07 4.67E+07 6.19E+06

MODALZ 0.95 0.96 0.95 0.99 0.99 0.93
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TABLE 23

MER-MREMER-MR-EFMASS

$ PERFORM CANTILEVERED MODAL ANALYSIS

ALTER 416,416

READ KLL,MLL,,,EED, ,CASECC/LAMA,PHIL,MI,0EIGS/C,N,MODES/S,N,
NEIGV $

ALTER 419

$ THE FOLLOWING CARDS CALCULATE 'MER'

UMERGE USET,PHIL,/PHIX/V,N,MAJOR=A/V,N,SUBO=L/V,N,SUB1=R $

MPYAD  MLL,DM,MLR/TMP/C,N,0/C,N,1/C,N,1/C,N,1 $

MPYAD  PHIL,TMP,/MER/C,N,1/C,N,1/C,N,0/C,N,1 §$

MPYAD  MER,MER,MREMER/1//// $

TRNSP  MER/MERT $

TRNSP  MER/MERT1 §

$ CALCULATE THE EFFECTIVE MODAL MASS MATRIX

ADD MERT,MERT1/EFMASS/(386.0886,0.)//C,Y,0PT=1 $

$ ‘PRINT THEM OUT

MATPRN MER,MR,EFMASS,MREMER,// $

$

$ CALCULATE KINETIC ENERGY OF MODES AT MASS DOF.

$ NORMALIZED TO UNITY, WITH A .01 FILTER

$

ALTER 455

MPYAD  UGV,MGG,/PHITM/1//// $

TRNSP  PHITM/PHITMT $

ADD PHITMT,UGV/ENERG///C,Y,0PT=1 $ ENERG=INTERNAL SORT

MATMOD ENERG,,,,,/ENERGL1,/2////.01 $ TO REMOVE TERMS ¢ 1%

SDR2 CASECC,CSTM,MPT,DIT,EQEXIN,SIL,, ,BGPDT,LAMA, ,ENERG],,/,,
ENERGY, , ,PENERGY/REIG $

OFP ENERGY,,,,//S,N,CARDNO $ Prints as Eigenvectors

MATGPR GPL,USET,SIL,ENERG//G///1.-2 $ Prints Summary

Notes: 1. Use mass normalization on the EIGR card.
2. Use of SUPORT card is required.
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TABLE 24

Galileo Baseline S/C Modal Frequencies

Mode Freq Mode Description Kinetic Energy Distribution

1 6.3 PWS Antenna PWS, 100%

2 6.8 PWS Antenna PWS, 100%

3 13.7 SXA bending, X SXA 45%, RPM 22%

4 13.7 SXA bending, Y SXA 487, RPM 21%

5 16.7 Probe, Y Probe 83%

6 18.2 Sciboom X, core torsion Sciboom 45%, SXA 20%
7 18.5 Probe X Probe 53%

8 18.6 SXA Y SXA 41%, Probe 9%

9 19.0 Probe X, SXA X SXA 34%, Probe 32%
10 22.2 Sciboom Z bounce Sciboom 57%

11 22,7 RTIGs Z bounce, -phase RTIGs 61%, RPM 19%
12 23.8 Nutation damper lateral Nutation Damper 51%
13 24.3 RTIGs Z bounce, in phase RIGs 61%

14 25.7 Nutation damper lateral Nutation Damper 52%,
15 27.0 Nutation damper lateral Nutation Damper 70%,
16 28.5 RRH Antenna, Y RRH 48%, EPD 22%

17 28.7 Scan platform theta X Scan platform 96%
18 29.7 -X RTG lateral (Y) -X RTG 96%

19 31.9 Scan sunshade (2) Sunshade 92%

20 32.5 +X RTG lateral (Y) +X RTG 93%

21 33.7 PLS+RRH+Sciboom PLS 312

22 35.4 EPD+PLS+Sciboom PLS 31%

23 38.0 S/C Z bounce RPM 54%, Probe 10%
24 38.3 Scan platform X Scan 73%, RPM 16%
25 38.6 PLS+EPD+Thrusters PLS 40%, EPD 21%
26 40.4 Probe torsion, RPM Probe 50%
27 40.8 -X Thruster, RPM RPM 53%
28 41.3 Sciboom mag tip, box Sciboom 47%
29 43.1 Thrusters lateral (Y) Thrusters 89%

30 43.3 RRH antenna X RRH 95%
31 44,9 RPM tanks, probe torsion RPM 38%, Probe 17%
32 45.8 =X RTG X motion -RTG 57%
33 46.1 Sciboom, misc Sciboom 49%, Scan 20%
34 46.7 Scan platform Z, X Scan platform 53%
35 47.7 400N engine, Probe tors 400N 13%, Probe 10%
36 48.0 -X Thruster torsion -X Thruster 95%

37 48.1 +X Thruster torsion +X Thruster 95%

38 48.3 400N engine X, SBA 4OON 56%, SBA 27%
39 48.8 400N engine Y, SBA 400N 43Z, SBA 19%
40 49.6 RPM+Despun Box Z bounce RPM 32%, Despun box 17%
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TABLE 24 (Continued)

Galileo Baseline S/C Modal Frequencies

Mode Freq Mode Freq Mode Freq
41 50.0 51 61.1 61 77.4
42 50.9 52 63.6 62 78.9
43 51.7 53 64.2 63 80.3
44 52,2 54 66.6 64 80.7
45 53.4 55 69.1 65 81.9
46 54.5 56 71.8 66 82.4
47 55.0 57 72.3 67 83.2
48 55.9 58 74.3 68 83.8
49 57.1 59 75.6 69 84.2
50 58.8 60 76.1 70 87.0
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TABLE 25

Model Summary

No. of GRIDS 1651
No. of Static DOF 6772
No. of Finite Elements 2928
CBAR 1591
CBEAM 72
CELAS2 3
CONM2 306
CONROD 119
CQUAD4 627
CROD 98
CSHEAR 114
CTRIA3 304
RBAR 43
RBE2 122
RBE3 76
No. of MASS DOF 1675*
No. of DYNAMIC DOF (ASET) 182
No. of Modes Retained - Loads Anal. 70
Frequency Upper Bound - Loads Anal. 87.0

*Contains approximately 700 DOF through use of density option on the material
cards.
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