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Current structural analysis methods employ large finite element
models to simulate the dynamic behavior of complex systems. These
models contain thousands of physical degrees of freedom and,
consequently, are too cumbersome and inefficient for many anaiytical
purpeses. One technique used to produce more manageable models is
the mathematical transformation of the physical degrees of freedom
into a set of independent modal degrees of freedom. This modal data
may then be truncated to reduce the problem size and, therefore, the
cost of the analysis. The trade-off for reduced problem size is a loss in
accuracy of the physical responses recovered from the model This
paper investigates the modal truncation seasitivity of transient
responses which have been recovered using the mode displacement
method. A new MSC/NASTRAN DMAP procedure which calculates the
modal truncation sensitivity of these responses has been developed.
Examples illusirate how this procedure may be used to determine if
adequate modal data has beon retained to produce accurate responses.
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1. INTRODUCTION

The use of very large finite element models has grown dramatically in
recent years. This growth is a response to the demand for increasingly
detailed analyses of complex structures such as the Space Shuttle and its
payloads. The computational requirements for the analysis of these models
are enormous, and can exceed the capabilities of all but the most powerful
computer systems. A number of methods have been developed to reduce
the size of these models and, thereby, the computational requirements and
cost of the analysis. The most common method invoives transforming the
model’s physical DOF into a set of independent modal DOF representing the
normal modes of vibration of the model. The size of the model may be
reduced by truncating these modal DOF at a specified cutoff frequency.
The lower this cutoff frequency is set, the lower the cost of subsequent
transient analyses will be. The trade-off for reduced cost appears when
the transient physical responses of the model are recovered, as modal
lruncation results in a loss in accuracy of these responses. This loss in
accuracy can be insignificant or be so severe as to invalidate the analysis.
Therefore, it is crucial to select a cutoff frequency that will ensure suf-
ficient accuracy without adding undue cost to the analysis.

The selection of an appropriate cutoff frequency, however, is not a
straightforward task. The dynamic characteristics of the model, the fre-
quency content of the transient forces applied to the model, and the data
recovery method employed all affect response sensitivily to modal trun-
cation. There are few general guidelines for determining cutoff frequencies
and therefore these frequencies are, at best, educated guesses. There is no
way to absolutely ensure the accuracy of the results short of using the
entire set of modal DOF, but that defeats the whole purpose of the modal
transformation technique. Therefcre, a method is needed to determine the
effect of modal truncation on transient physical responses. A new
MSC/NASTRAN DMAP procedure has been developed which answers this
need in a convenient and efficient manner. It can be employed to root out
potential truncation problems and indicate when a higher cutoff frequency
is needed. This reduces the uncertainties in the analysis associated with
modal truncation and, thus, increases the overall confidence in the finai
results.



2 MODAL TRANSFORMATION, PARTICIPATION
AND TRUNCATION SENSITIVITY

The equation of motion for the finite element model may be written
mi + cx + kx = f(t) (2.1)
The normal frequencies and modes of vibration must satisfy the equation

(k-0 2m)é,=0 (2.2)

for 7= 1,2, ..., N The modal matrix & includes all # normal modes and
may be truncated to ¢, to represent only the kept set of modes. Trun-

cating the modes removes the flexibility of the higher modes from the
model and increases its overall stiffness. The physical DOF may be
transformed into a truncated set of modal DOF using the relation

x=%oa4q (2.3)

This transformation produces the modal equation of motion

b Tmd, g+ Tc, g+ & TkS q =S (M(1) (2.4)
or
Mg + Cq + Kq = F(1) (2.5)

The time history responses of the modal DOF are then solved using
numerical integration. The time history responses of the physical DOF are
recovered as follows:

x(t) - &,q(t) (2.6)
x(t) = d,q(t) (2.7)
x(t) - & q(1) (2.8)

This is known as the mode displacement method of data recovery.



A concept closely related to modal truncation sensitivity is com monly
known as modal participation. The equation for displacement modal
participation (velocity and acceleration modal participation are similar and
excluded for brevity) is written

P, =% qft) (29)

and represents the individual contribution of the sth normal mode to the
total displacement, i.e,, the mode's participation in the response. Modal
participation and truncation sensitivity are both calculated at a single time
point, commonly the time at which the maximum response occurs. Modal
truncation sensitivity is now defined as

f
S, =2 ¢ ,qft) (2.10)
h=1

and is simply the contribution of the sth normal mode and all proceeding
modes to the total response, i.e., the response that would be recovered if
only the first / modes were kept.

3. BXAMPLES

Two examples of modal truncation sensitivity analysis are presented: a
simple beam problem and a Space Shuttle landing event simulation.

The first problem consisted of a cantilevered beam. It was represented by
an MSC/NASTRAN finite element model comprised of four free physical
DOF, four BAR elements, and four CONM2 concentrated masses. This model
is shown in Figure 3.1. Four normal modes were generated for the model
using Solution 63. The mode shapes and their corresponding frequencies
are shown in Figure 3.2. A normal force was then applied to the free end
of the beam as follows

f(t) = 1000 SIN(277 8 1) (3.1)
and the displacement time histories of each physical DOF were recovered

using Solution 72. The modal truncation sensitivity of each response
maxima was then caliculated. The load cases, times and GRID points were
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selected for truncation analysis through the NASTRAN Case Control Deck
shown in Figure 3.3; no DMAP changes were required. The resultant modal
truncation sensitivity plots are shown in Figure 3.4.
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Fig. 3.2 Cantilevered Beam Normal Modes of Vibration



TITLE = CANTILEVERED BEAM MODEL - 8 HZ MODAL TRUNCATION SENSITIVITY
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Fig. 3.3 Case Control Deck for Beam Modal Truncation Sensitivity
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Figure 3.4 Beam Modal Truncation Sensitivity
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Figure 3.4 Beam Modal Truncation Sensitivity (mntinugd)
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What are these plots saying about the model and its responses? First, look
at the plot for the maximum displacement of GRID 1 in Figure 3.4a. Note
that virtually all of the response was from the first mode and that adding
in the second, third, and fourth modes had very little effect. This is to be
expected since the displacement of the free end of a cantilevered beam is
primarily dependent on the first bending mode. Moving towards the fixed
end of the beam, the stiffness of the beam increases and the responses
there would be expected to depend more on the high frequency modes.
This expectation was clearly fulfilled as shown in Figures 3.4b through
3.4d. The extreme case was the maximum displacement at GRID 4, where
fully sixty-five percent of the response was from modes two and three.
The thirty-five percent contribution of mode one represents the
displacement that would be recovered if the solution were truncated to
only one mode. As noted in the previous section, truncation removes the
flexibility contributed by the higher modes and, therefore, reduces the
overall flexibility of the model. Displacement is proportional to flexibility
and, consequently, the reduction in flexibility resulted in a reduction in the
displacement recovered from the truncated model. Note that mode four
did not contribute significantly to any of the responses since the fourth
normal frequency of 16.4 Hz was over twice the forcing frequency of 8.0
Hz. This illustrates the value of one of the few generally accepted
frequency cutoff rules, namely, that modes should be calculated to at least
double the highest forcing frequency.

The beam model is simple enough that a modal truncation sensitivity
analysis is not needed to understand the model and its responses. The next
model is much more difficult to fully understand.

There are several events during the course of a Space Shuttle mission that
produce significant dynamic responses, and the one that will be examined
here is the normal landing event. The finite element model employed
actually consisted of two models: an Orbiter model produced by Rockwell
International (Ref. 3.1) and a Centaur Integrated Support Structure model
produced by General Dynamics Space Systems Division (Ref. 3.2). These
structures are shown in Figure 3.5. The total size of the two models was
over six thousand physical DOF. The models were merged using the
Solution 63 Superelement component mode synthesis capability to produce
an overall system modal model. The conventional system cutoff frequency
for landing events is 42 Hz, and this resulted in the calculation of 205
system modes. The landing event modal time histories were calculated
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using Solution 72 with a modal initial conditions alter (Ref. 3.3). The
highest forcing frequency did not exceed 20 Hz. To further complicate this
problem, the responses of interest were not displacements, but rather
reaction forces between the two models. These forces were recovered at
the Superelement boundary using the mode displacement method.
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Figure 3.5 Orbiter and Centaur Integrated Support Structure

The modal truncation sensitivity was calculated for two interface force
maxima: one force acting on GRID 10150 in the -X (-T1) direction and the
other acting on the same point in the +Z (+T3) direction. The modal
truncation sensitivity plots for these forces are shown in Figure 3.6. Figure
3.6a shows that virtually all of the modal contribution to the +Z direction
force was below 18 Hz. The flat sensitivity between 18 Hz and the 42 Hz
cutoff indicated that enough modes were probably kept to accurately
calculate this force. On the other hand, Figure 3.6b shows that the
sensitivity calculated for the -X direction did not end in a plateau, but
climbed steadily right up to the 42 Hz cutoff. This led to the prediction
that the load would continue to climb if modes were added above 42 Hz.
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Figure 3.6 Modal Truncation Sensitivity - 42 Hz Model
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GRID 10150 T3 Orbiter Interface Load Vs. Cutoff Fregusacy

(a)

GRID 10130 T1 Orbiter Inm('rsisg Load Vs. Cutoff Frequency
b

Figure 3.7 Modal Truncation Sensitivity - 100 Hz Model
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In order to check this prediction, 448 system modes were calculated for
the model up to 100 Hz. Modal truncation sensitivity was again calculated
and the resuiting plots are shown in Figure 3.7. Figure 3.7a shows that the
+Z direction force did not rise more than five percent over the 42 Hz to 100
Hz range, indicating that 42 Hz was an acceptable cutoff frequency for that
response. Figure 3.7b shows that the force in the -X direction did not
plateau until 65 Hz, indicating that 65 Hz would be the minimum cutoff
frequency required to accurately recover the force. The modal truncation
sensitivity analysis positively identified the 42 Hz truncation problem and
the need for a higher cutoff frequency.

4. CONCLUSION

An MSC/NASTRAN DMAP procedure has been developed which calculates
the modal truncation sensitivity of structural- dynamic responses. This
procedure successfully predicted that a Space Shuttle payload analysis
required additional system modal data in order to accurately calculate
system responses.
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