MSC/NASTRAN Implementation of Coupled
Structural-Acoustic Response for
Aircraft Cabin Noise Prediction

by A.Mera*, T.F. Yantis*, G. SenGupta**, A. Landmann**

- Low frequency noise transmission into an aircraft cabin (airborne and
structure-borne) is becoming an increasing factor for advanced propeller powered
aircraft. Analysis of this problem with finite element methods requires coupling
the mbtian of a flexible structure (fuselage) with the pressure in the acoustic
volume (cabin interior). The matrix formulation takes advantage of certain
underlying similarities between the structural and acoustic equations and solves
the 3-D coupled structural-acoustic problem for free and forced vibrations.

In this presentation, the basic principles of this method will be outlined, and
results will be presented to illustrate its potential.

Proposed presentation at the MSC/NASTRAN Users’ Conference,
March 20 - 21, 1986 in Los Angeles, California.

*Boeing Computer Services, Engineering Technology Applications Division
**Boeing Cominercial AirplaneCompany, Interior Noise Research Group
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COUPLED FLUID-STRUCTURE
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DYNAMIC REDUCTION IN THE FLUID
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MSC/NASTRAN IMPLEMENTATION CONCERNS

o USE DMAP WHENEVER POSSIBLE: CANNOT MODIFY MSC/NASTRAN AT FORTRAN LEVEL

o MAINTAINABILITY. UPWARD COMPATIBILITY: DMAP BETTER THAN
ALTER PACKET

o USER FRIENDLINESS TO NON-EXPERT
o SIZE LIMITATIONS: SUPEREMENT TECHNIQUES. SPLIT DATA BASES
o DYNAMIC REDUCTION VIA:

- GDR OR LANCZOS

- GUYAN

- MODAL TRANSFORMATION

@L!ALI FICATIONS

e FINITE ELEMENT THEORY

e STRUCTURAL DYNAMICS: CMS

e ACOUSTICS

e MSC/NASTRAN EXPERTISE: MODELING, DMAP

e NUMERICAL METHODS: EFFICIENCY, ERROR ANALYSIS

SOFTWARE/HARDWARE INTERFACE: LARGE PROBLEMS,
PRE/POST PROCESSING
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DATA BASE MANAGEW
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2-D CYLINDER, SYMMETRIC
HALF MODEL

2D Structural Vibrations,
Uncoupled (Empty Container)

U = cos (n ¢)

MODE THEORETICAL NASTRAN
n (Hz) (Hz)
1 0.00 0.00
2 0.85 0.61
3 2.03 1.73
4 3.70 3.32
5 5.84 5.37

20 © 95.22 91.22
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UNCOUPLED 2-D STRUCTURAL
VIBRATIONS
(EMPTY CONTAINER)
y o

THy=173H Tfa=33iHz
93 = cos39 94 = cosdf

fg = 18.18 Hz
¢g = cos%0

f") = 22.55 Hz
O«‘o = cos100
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""" INODE LINE,

f3 = 180.07




f4 = 224.65
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COUPLED FREQUENCY
RESPONSE AT 3.20 Hz

COUPLED FREQUENCY
RESPONSE AT 20 Hz
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CONVERGENCE STUDIES
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e ELEMENT SELECTION: QUAD2 VS. QUAD4
e MESH REFINEMENT

e MODAL TRUNCATION

e MODAL CONTENT OF APPLIED LOAD
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3D Structural Vibrations
Uncoupled (Empty Container)

u = cos n ¢ sin mfx

MODE THEORETICAL NASTRAN

n.im. (Hz) (Hz)
6.1 14.71 14.68
5.1 14.84 14.85
7.1 16.73 16.66
4.1 18.28 18.26
8.1 20.05 19.99
9.1 24.21 24.21
3.1 26.95 26.59

UNCOUPLED ACOUSTIC VIBRATIONS
(RIGID WALL)

N — =
= in mnx

@ [ | <] u = cos (n ¢) sin S Be, (R)
MODE THEORETICAL | NASTRAN
n.m.k. (Hz) (Hz)
1.0.0 41.85 41.89
1.1.0 116.77 117.06
3.0.0 125.55 126.71
3.1.0 166.27 167.27
1.2.0 185.61 187.55
5.0.0 209.25 214.66




UNCOUPLED 3-D STRUCTURAL
VIBRATIONS
(EMPTY CONTAINER)
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CONCLUSIONS

® FSI CAPABILITY GAVE GOOD RESULTS
FOR TEST PROBLEMS

® SIMPLIFYING ASSUMPTIONS
® COST VS. ACCURACY TRADE-OFF
® SIZE LIMITATIONS

® MSC/NASTRAN DMAP IMPLEMENTATION
LIMITATIONS

¢ FURTHER PLANS FOR ENHANCEMENT

FURTHER PLANS FOR
ENHANCEMENT

e INCLUDE RESIDUAL FLEXIBILITY OF TRUNCATED
HIGHER ORDER MODES

e DISCRETE DAMPING

e RELAX MODELING RESTRICTIONS AT INTERFACE
— NON-IDENTICAL MESH (INTERPOLATION)
— NON-NORMAL STRUCTURAL u4

e MORE DATA RECOVERY OPTIONS

e VALIDATION VS. VIBRATION TEST



