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INTRODUCTION

An important class of design problems in the commercial nuclear power industry
is concerned with the hydrodynamic loading of thin shell structures which form
the boundary of a pool of water called the suppression pool. The purpose of the
suppression pool is to condense high pressure steam released from the reactor
pressure vessel during abnormal operating transients or postulated accident
conditions. When these events occur, the steam condensation is preceded by the
clearing of water and air under high pressure from within the piping connecting
the pressure vessel to the suppression pool. The clearing of the water and air
and the subsequent steam condensation produce transient pressure disturbances in
the pool which are transmitted to the boundary. The response of the boundary
structure, and its attached piping and equipment, to these loads is an important

consideration in the design evaluation of the suppression pool system.

Realistic analysis of the hydrodynamic loading of suppression pool structures
requires a careful treatment of the interaction between the pool water and its
boundary. Considerable success has been achieved by modeling the pool as a
linear acoustic fluid with pressure as the dependent variable. An efficient
algorithm for modal transient solution of problems involving the coupling of a

linear acoustic fluid to a linear elastic structure has been developed for use



with MSC/NASTRAN [1] and implemented at the General Electric Co. by means of
DMAP coding. In using this algorithm, it is necessary to select a cutoff
frequency for the extraction of the natural frequencies and modes of the
structure. The structure modes are subsedquently combined with the fluid
degrees-of-freedom to form coupled modes which are used for the calculation of
the transient response of the fluid-structure system.. Typically, the cutoff
frequency for the structure modes is related in some manner to the highest

frequency of significance in the loading function.

Experience in the use of the fluid-structure algorithm has shown that serious
inaccuracies can occur if no correction is made to account for quasi-static
response of the system. Previous work [2] has dealt with the need to include a
static correction to accurately represent the response of the fluid in the limit
of near incompressibility. Recent experience has indicated the need to include
a similar correction for accurate calculation of the structural response. In
experiments performed to identify the nature of air-bubble osciilation loads,
for example, it has been observed that the suppression pool structure follows
the low frequency variation of the applied pressure and that its response is
doninated by membrane deformation. Higher frequency bending modes are observed
but they contribute significantly less than the load-following membrane respoise.
Accurate calculation of the stress requires the inclusion of relatively long
wavelength structure nodes which are associated with membrane deformation of the
shell. The long-wavelength modes may, however, correspond to high frequencies
which would not be included from consideration of the frequency content of the

loading function.



One approach to the problem of insufficient modes for load-following structural
response would be to simply raise the cutoff frequency used for the modal
extraction. This has the undesirable consequence of requiring the calculation of
a large number of additional modes which contribute very little to the structural
response. A second alternative is to utilize one of the standard static
correction methods (e.g., mode acceleration). The cost of this alternative is
unacceptable, however, because it requires the solution of a large system of
equations, representing the static response of the structure to the

instantaneous load, at each tine step for which the response is required. 1In
typical applications of the fluid-structure algorithm, the entire history of the
response is required to demonstrate argreement between calculations and test

data.

This paper describes a solution to the problem of omitted structure modes by the
introduction of a shape function which is specifically chosen to capture the
quasi-static response of the structure. The shape function is appended to the set
of dry-structure modes before the coupled system modes are computed. In this

way the existing DMAP coding, developed for modal solution of fluid-structure
interaction problems, can be used without alteration. The method can be thought

of as a first-order application of the Ritz-vector technique described in [3].



DESCRIPTION OF STATIC CORRECIION METHOD

The MSC/NASTRAN program can be used for the transient analysis of a system in
which a linear acoustic fluid is coupled to a linear elastic structure.
Mathematical details are described in [1]. The matrix formulation of the
undamped coupled equations for structure displacement, u, and fluid pressure, p,

can be written as
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M = structure mass matrix
KS = structure stiffness matrix
C = fiuid "mass”™ matrix
KF = fluid "stiffness” matrix
A = fluid-structure coupling matrix
F = volumetric flow source applied to the fluid

The fluid "mass" matrix in Equation (1) is a diagonal matrix with elements equal
to the reciprocal of the fluid bulk modulus. The fluid "stiffness" matrix is
proportional to the reciprocal of the fluid density and is derived from the
finite-element formulation of the Laplacian operator. The coupling matrix, A,
contains non-zero terms only at row/column positions corresponding to matched
pairs of fluid and structure grid points on the fluid-structure interface.

The matrix terms of A are equal to the elements of area associated with the

interface points.



The matrix formulation of Equation (1) is appropriate for numerical solution in
physical coordinates by direct integration. For large problems of the type
being discussed here, direct integration is not practical. A more efficient
method, based on modal analysis, is used. The use of the modal method requires
a set of specially coded DMAP algorithms which interact with the standard

MSC/NASTRAN rigid formats.

In summary, the modal solution procedure is as follows:

1) Compute natural frequencies and mode shapes for the dry structure.

2) Compute the coupling matrix, A.

3) Reformulate the problem with fluid pressures and structure modal
coordinates as the dependent variables.

4) Compute the coupling terms which appear in the reformulated coefficient
matrix. These terms involve the modal properties of the dry structure and
the coupling matrix, A.

5) Compute the fluid "mass" and "stiffness® matrices and enter them in the
reformulated coefficient matrix.

6) Compute eigenvalues and modes for the coupled system. Each mode represents
a set of pressures at the fluid grid points and a corresponding set of
modal displacements for the structure.

7) Perform modal transient analysis using the coupled eigenvalues and modes.

(Modal damping can be introduced at this stage of the solution process.)

In the calculation of both the dry-structure and coupled modes (steps 1 and 6
above) an upper-bound cutoff frequency must be selected. Typically, the cutoff
frequency is related in some manner to the highest frequency of significance in

the loading function.



A major potential deficiency of the above procedure is that it may not include
enough structural modes to sirmulate load-following behavior in which the shell
responds to the interfacial pressure in an essentially quasi-static manner. The
membrane modes required to represent load-following response may easily
correspond to frequencies significantly above the cutoff frequency selected on

the basis of the spectral content of the loading function.

The correction procedure proposed here is based on the solution of the static

form of the matrix equation (1), namely

Ks u - ATp =0 (2)
and

Ko p=F (3)

The function FO in (3) represents an arbitiarily normalized fluid loading having
the same spatial distribution as the transient loading function, F(t), in (1).
(It is implicitly assumed that the spatial distribution of F does not vary
significantly with time.) The first step in the static correction procedure is
to solve (3) to obtain the spatial variation of the wall pressure, i.e.,

p = KF—lFO (4)

Equation (4) is now used to substitute for p in (2), which is then solved to
*
obtain the static shape function, up .

u, =K A"K, F (5)

Suppose that the dry-structure eigenvalue problem has been solved to obtain a
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A static shape, Ups orthogonal to the mode set, ﬂi, can be constructed from u*R

by the standard Gram-Schmidt procedure
N T
= ¥ - *
=t > 8T Ml ()
with the result that

ﬂjTMsuR=0 (3=1,2, ..., N) (8)

The orthogonalized shape, Ups is appended to the mode set ﬂi. The frequency,

W corresponding to the shape function, Ups is given by the Rayleigh quotient
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The calculation of the eigenvalues and mode shapes of the coupled

fluid-structure system proceeds in the manner described above, using the

augmented dry-structure mode set.



EXAMPLE OF APPLICATION

The potential importance of the static correction can be illustrated by the
calculation of the response of a boiling water reactor (BWR) suppression pqol
structure to the pressure disturbance caused by air-bubble oscillation following
actuation of a safety relief valve (SRV). Figure 1 shows a section view of the
toroidal shell structure which contains the suppression pool. The toroidal
shell is made up of sixteen 22.5° mitred cylindrical sections. Its radius to
thickness ratio is about 280. Also shown is the SRV piping which is used to
relieve overpressure transients in the reactor pressure vessel. When an SRV is
opened, steam enters the line and compresses the air ahead of it. The
compressed air is discharged into the pool where it forms bubbles which expand
and contract as they rise to the surface. Figure 2 shows a typical example of
the torus shell pressure produced by bubble oscillation following SRV actuation.
Figure 3 shows the shell hoop stress measured at bottom-center. The measured
stress clearly indicates that the structure follows the applied load quite

closely.

The finite-element model of the toroidal shell structure used to calculate the
response to the air bubble load is shown in Figure 4. It represents a 22,5°
sector of the toroidal shell, the ring stiffener at the mitre Jjoint and one pair
of support columns. QUAD4 elements were used to model the shell and BAR
elements the ring stiffener and the support columns. The loading function shown
in Figure 5, representing the air-bubble oscillation pressure, was applied to
the fluid-structure interface. It has maximum amplitude at the bottom of the

pool and attenuates to zero as the free surface is approached.



Two calculations were performed to illustrate the importance of the static
correction. 1In the first, the response was calculated by modal superposition
using all the structure modes up to 30 Hz (23 modes). From examination of the
applied load (Figure 5), which is essentially a damped sinusoid at about 7 Hz,
one might judge that inclusion of all modes below 30 Hz would be adequate. 1In
the second calculation, the static correction shape was appended to the same 23
modes (as described above) before the transient calculation was made. The
static shape corresponded (by the Rayleigh quotient) to a frequency of 46 Hz.
Figures 6 and 7 show the hoop stress at bottom center of the shell with and
without the static correction. The effect of the static correction on both fre-
quency and amplitude is seen very clearly. For the case without static
correction, the hoop stress is dominated by response at about 26 Hz and the peak
amplitude is about one-third of what was measured (see Figure 3). With the
static correction the hoop stress follows the load at 7 Hz and the peak ampli-

tude agrees with the measured value.
CONCLUSION

The above example illustrates the potential importance of the static correction
to problems involving the hydrodynamic loading of thin shell structures. The
use of the modal method without static correction can lead to substantial errors
in the frequency, amplitude, and character (e.g., bending vs. membrane) of the
structural response. The algorithm proposed in this paper has significant
advantages in cost and convenience over the alternatives of raising the cutoff
frequency or using the standard mode acceleration approach. It is especially
well suited for use with the symmetric modal method for the solution of

fluid-structure interaction problems with MSC/NASTRAN.
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FIGURE 1. SUPPRESSION POOL STRUCTURE
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FIGURE 2, MEASURED TORUS SHELL PRESSURE
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FIGURE 3. MFASURED SHELL STRESS
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FIGURE 6. BOTTOM-CENTER HOOP STRESS (NO CORRECTION)
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FIGURE 7. BOTTOM-CENTER HOOP STRESS (CORRECTED)
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