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Abstract

Shape optimal design of two-dimensional structures discretized in finite
elements is investigated with emphasis on creating an interactive Computer Aided
Design capability. The paper will first provide a short description of the
approach followed to create an appropriate geometric model, involving a
relatively small number of design variables. Next the important question of how
to perform the sensitivity analysis 1is discussed. A general procedure is
proposed, that takes advantage of the parametric modeling concepts used to
create the design model. The sensitivity analysis can then be readily
accomplished by a semi-analytical approach, i.e., a finite difference
approximation of the stiffness matrix is employed at the element level. The
numerical solution to the shape optimal design problem is obtained by resorting
to an efficient optimizer based on the convex linearization method.

A two-dimensional pre- and post-processing module is described, which is aimed
at performing interactive shape optimal design on an engineering workstation.
This module exhibits some innovative visualization techniques that should highly
facilitate the task of the designer. Examples of application to classical shape
optimal design problems are offered to illustrate the various functions of the
new interactive optimization system. Although the current capability  is
restricted to simple 2-D structures, it is based upon very general concepts that
could be readily implemented in general purpose finite element systems such as
MSC/NASTRAN.
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INTRODUCTION

Shape optimization techniques are concerned with improving some characteristics
of a structure by modifying its boundaries in an optimal way. Most often such a
shape optimal design problem consists of minimizing an objective function
subject to constraints insuring the feasibility of the structural design.
Mathematically the optimization problem considered in this paper can be written
in the following form:

minimize £ (x) (1)
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The objective function (1) is a non-linear function of the design variables x_ .
It usually represents a structural characteristic to be minimized (e.g. weight}.
The non-linear inequalities (2) are the behavior constraints, which impose
limitations on structural response quantities (e.g. stresses and displacements).
The design variables must also be bounded by the side constraints (3), where x.
and";ci are respectively the lower and upper limits that reflect fabricationa
and analysis validity considerations.

Care must be exercised in the selection of the design variables xi. The
coordinates of the boundary nodes of the finite element model can be used as
design variables (a common practice in early work on shape optimization, e.g.
Ref.[1]1)). This choice exhibits however many severe drawbacks. The set of design
variables is very large and the cost and difficulty of the minimization process
increase. It has a tendency to generate unrealistic designs due to the
independent node movement and additional constraints avoiding such designs are
difficult to cope with. Moreover an automatic mesh generator is necessary to
maintain the mesh integrity throughout the optimization process. The solution is
to avoid a one-to-one correspondence between the finite element model and the
design variables.

One of the ways to achieve this goal is to use the "design element" concept. In
this approach the structure is dJdecomposed into a few subregions of simple
geometry. These subregions are described in a compact way by using a limited
number of control nodes (or master nodes). Each region consists of several
finite elements. During the optimization process the geometry of conveniently
selected subregions is allowed to change: these regions are called design
elements. The movements of the corresponding control nodes are the design
variables.

The concept was initially introduced in Ref.[2] where two-dimensional
isoparametric finite element interpolation functions were used to describe the
design element boundary. Recently blending functions commonly used in computer
graphics for interactive generation of curves and surfaces (Bezier, B-splines)
have been proposed to describe the boundaries [3,4]. This is also the approach
followed in the present paper. The shape variables are thus the positions of the
master nodes which control two families of curves, whose cartesian product
defines the design element.




This formulation lends itself well to shape optimal design problems. The
blending functions provide a large flexibility for the geometric description.
With the B-spline formulation, boundary regularity requirements are
automatically taken into account. In addition a few design elements are
generally sufficient to fully describe the regions that are modified during the
optimization process. The optimization problem has therefore a limited amount of
design variables, and it provides an elegant way to perform the sensitivity
analysis on the basis of finite difference techniques, as described further in
this paper. However it should be noted that an analytical formulation of the
sensitivity derivatives can also be established [4].

Finally it is relatively straightforward to generate a suitable finite element
mesh and to maintain its integrity throughout the optimization process. Indeed
the design element can be mathematically defined as the cartesian product of two
families of curves. This provides an analytical interpolation scheme, which
permits determining the coordinates of any point (finite element node) inside
the design element or on its boundaries. A regular mesh is initially constructed
in the curvilinear coordinate system of the design element. Next coordinate
transformations are applied to obtain the mesh in the real design element (see
Fig. 1).

This representation, wherein the FEM mesh can be directly derived from the
coordinates of the control nodes, leads to the distinction between a design
model and an analysis model. The design model consists of the small number of
design elements, with their geometry determined by the control nodes, and the
fixed subregions. By entering a relatively small number of design elements, it
is possible to create a compact design model that describes well the structure
to be optimized. The analysis model is the finite element model, characterized
by the node coordinates of the mesh, the types and material properties of the
elements, the applied loads and boundary conditions, etc... The analysis model
can directly be derived from the design model at any stage of the iterative
optimization process, because of the adopted internal parametric representation.
Therefore the concept of design model is one level above that of analysis model.
Ultimately, when the discretization and analysis schemes will become
sufficiently reliable, it can be expected that only the design model will remain
accessible to the user, most of the analysis model being completely transparent.

The foregoing optimization concepts have been implemented in a finite element
system made up of two parts. The first module is used in batch mode to perform
the structural analysis and its associated sensitivity analysis. It corresponds
to an essential ingredient of the research effort described in this paper ,i.e.,
to demonstrate the validity of a finite difference approach for generating the
shape sensitivity results. The second module is an interactive optimum design
system that uses the sensitivity coefficients produced by the first module. This
module contains innovative graphics display capabilities that should
considerably facilitate the task of a designer willing to optimize a structural
shape. Substantial research and development efforts have been devoted to
devising this new interactive optimizer.



OPTIMIZATION METHOD

In this study the finite element method is used to analyze the behavior of a
structure i.e. weight, displacements and stresses. In order to improve a
structural design the first derivatives of these quantities with respect to the
design variables must be evaluated: this is the purpose of the sensitivity
analysis. These derivatives are subsequently used by an optimizer to find a
better design. Both the sensitivity analysis method and the optimizer used in
this investigation will be described.

Sensitivity analysis

The derivatives relevant for the shape optimal design problem are computed in
this work by a finite difference scheme embedded into a finite element solver.
The current implementation is restricted to two-dimensional elastic structures
in plane stress or plane strain, modeled with isoparametric eight-node elements.
However it is important to emphasize that the same concepts can be employed to
deal with more complicated design problems (e.g. solid models) or more
sophisticated finite elements (e.g. three-dimensional structure involving plates
and shells). In fact the approach presented below is largely independent of the
types of finite elements used in the analysis model, and therefore it could be
readily implemented in a large scale general purpose FEM system such as
MSC/NASTRAN [5]), or even in a Personal Computer package such as MSC/PAL [6].

This section shows how the sensitivity analysis can be incorporated into any FEM
program with a very little amount of modifications, and it explains in detail
how the weight, displacement and stress derivatives are computed. 1In a
displacement finite element approach, the structural analysis consists of
solving the equilibrium equations:

(xl1{u} = {F} (4)

Differentiating this set of equations with respect to the design variable X
gives:

{x] {_amhl} _ {SF} _ [”_amlg_ {u} (5)
Ik, dx,
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This equation means that the displacement derivatives can be obtained by solving
the original set of equations with another loading {Bi} , the so-called
pseudo-load:

§.} = (3B — [3K) {u} (6)
(%] {ax}_ [ax]
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The number of additional pseudo-load vectors is n*c, where n is the number of
design variables and ¢, the number of applied 1loading cases. The element
stresses are expressed in terms of the displacements by the equation:

(0} = im{u} 7

so that the stress derivatives become:
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The total weight of the structure is calculated by adding the contributions of
each isoparametric element. The individual element weight is itself obtained
through a conventional numerical integration scheme:

X
W= Xwel = le pw, det (J(E,)) (9)

where r denotes the number of Gauss points.

The finite difference approach is introduced by perturbating each design
variable x. by a small amount dx. and regenerating the mesh for the modified
structure.]This means that each element stiffness matrix must be computed again
as many times as the number of design variables. The total weight W of the
perturbated structure can now be recalculated using Eq. (9).

The derivative of the total weight can- then be approximated:

BW _ W(x +dx )-W(x,) (10)
ax, ~ dx;
i i
After assembling the regenerated element stiffness matrices, the global

stiffness matrix of the perturbated structure can be obtained. The pseudo-loads
can then be computed from Egq. (6). Approximating the derivative of the global
stiffness matrix with respect to the design variable X, by its finite difference
derivative, it comes:

@i} . Rixj+ax)) - [K(x))] (11)
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The pseudo-loads are thus calculated as the difference between two vectors which
result from the multiplication of the original displacement solution {u} with
respectively the original assembled stiffness matrix and the assembled stiffness
matrix of the perturbated structure.

The displacement derivatives can now be obtained by solving the equilibrium
equations with these pseudo-loads as additional loading cases:

{au} . [ {93) ' (13)

Any particular component can be selected out by the equations:

d =<b> {u} (14)
ad <b> [3u_ (15)
{3x} = {Bxg

where <b> denotes a unit wvector.



Finally the element stress derivatives have to be computed. The stresses for the
perturbated structure are given by:

{5}= 1m{u} (16)

However, as the displacement gradients are calculated by the pseudo-loads
technique, the equilibrium equations are not solved for the perturbated
structure and thus {u} are not available. This displacement solution 1is
approximated by:

fu} = {u}+puy ax, = {u} + {Au} (7
) %x} .

i
Likewise the stress matrix [%] is approximated as:

(T] = [T] + [AT] (18)

so that Eg. (16) becomes:

~
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(T {u} + (T){Au} + (ATI{u} + (ATH{Au} (19)
The last term is one order of magnitude smaller than the other terms and can

therefore be neglected. Using Eq. (7) the first term can be identified as
representing the stresses of the original structure. Hence:

{0} ={9 + (mau} + (ATI{u} (20)

These stresses are used to get an approximation to the stress derivatives:
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This is a finite difference equivalent of Eg. (8). The importance of the above
derivation is however that since the finite element program used does not employ
a stress matrix [T], Eqg. (8) cannot be used explicitly. Rather the stresses in
the FEM program are computed for each Gauss integration point inside the
element, without calculating an average stress for the whole element. This is
done in an element subroutine, which uses geometry information on the element
{shape functions) and the displacement solution. This corresponds to {0}=[T]{u},
since the stress matrix incorporates this geometric information.

According to the above derivation we can now proceed as follows. Using the
original mesh and the displacement solution of the original structure {u}, the
stresses are evaluated at the Gauss points. With Eq. (19) in mind, this
procedure can be repeated using the perturbated geometry and the approximated
displacement solution for this modified structure. The first will give the exact
values for the Gauss point stresses in the original structure, while the latter
provides a good approximation for the values of the Gauss point stresses in the
perturbated structure.

For simplicity the element stress will be taken as the stress at the center
Gauss point. Using the two sets of element stresses, a finite difference



approximation to the element stress derivative can be obtained as follows:

o} - {E}d- {o} (22)

Any particular component can be selected out by the equations:

0 = <b>{o} (23)
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The foregoing developments provides thus a means to compute the derivatives of
the structural weight, of the displacements, and of the stresses by finite
differencing. The steps to be followed are schematized in the block diagram of
Fig. 2.

The CONLIN optimizer [7,8] was used to solve the optimization problem. It is a
specially well suited optimizer for structural optimization, based on a convex
approximation scheme.

The convex linearization method, and the associated CONLIN optimizer, exhibits
many interesting features and it is applicable to a broad class of structural
optimization problems. The method employs mixed design variables (either direct
or reciprocal) in order to get first order, conservative approximations to the
objective function and to the constraints. In this approach the primary
optimization problem is replaced with a sequence of explicit subproblems having
a simple algebraic structure. Each subproblem is convex and separable, and
therefore it can be readily solved by using a dual method formulation.

The dual problem consists of maximizing a quasi-unconstrained dual function
depending only on the Lagrangian multipliers associated with the behavior
constraints. These multipliers are in fact the dual variables subject to simple
non-negativity constraints. The CONLIN algorithm can be viewed as a
generalization of well established approaches +to pure sizing structural
optimization problems (no change in geometry), namely "approximation concepts"
and “"optimality criteria" techniques [9). As such it is capable of addressing a
broader class of problems with considerable facility of use. The method has
recently demonstrated its ability to solve efficiently shape optimal design
problems involving two-dimensional structures in plane strain or plane stress
[3,4] as well as trusses of variable configuration [10].

At each successive iteration point, CONLIN only requires evaluation of the
objective and constraint functions and their first derivatives with respect to
the design variables. These quantities are provided by the finite element
analysis system equipped with sensitivity analysis features. The CONLIN
optimizer will then select by itself an appropriate approximation scheme on the
basis of the sign of the derivatives. CONLIN usually generates a nearly optimal
design within less than 10 iterations, most often by producing a sequence of
steadily improving feasible designs. Finally it should be emphasized that the
CONLIN method is simple enough to lead to a relatively small computer code, well
organized to avoid high core requirement.



The initial optimization problem is thus transformed in CONLIN into a sequence
of explicit subproblems, which are solved in the dual space. The efficiency of
this dual formulation is due to the fact that the dimensionality of the dual
space is relatively low and depends on the number of active constraints at each
design iteration. CONLIN advantages, which make it especially well suited to the
undertaken study include:

- it does not demand a high level of accuracy for the sensitivity analysis
results, Dbecause it 1is based on conservative approximation concepts,
allowing them to be obtained from finite difference techniques;

- it has an inherent tendency to produce a sequence of steadily improving
feasible designs and usually generates the optimal design within less than
10 FEM analyses;

- each CONLIN iteration is accomplished very rapidly, even for relatively
large scale problems; this is an important feature within an interactive
environment.

INTERACTIVE OPTIMUM DESIGN SYSTEM

As reliable optimization algorithms, such as CONLIN, are now available to solve
shape optimal design problems, substantial development efforts must be devoted
to implement an appropriate user interface. The ultimate goal is to devise
suitable tools for a designer to effectively incorporate optimization concepts
into the real design cycle. Indeed an important aspect of finite element
analysis and optimization capabilities should be their ability to really help
the user in accelerating the design process. The interactive engineering design
system of the future should be able to produce extensive graphical outputs,
displaying- in an expressive way meaningful results.

These graphics display capabilities should be organized to be easy to use
interactively. Industrial applications namely reveal that it is not generally
possible to optimize a structure in one single computer job. Frequently it is
necessary to improve the structural model, to modify the set of retained
behavior constraints (because some constraints, initially not critical, become
critical), or to relax some constraints if their maximum values are too severe
and no feasible solution can be found. Sometimes it is needed to redefine the
design model, or to introduce additional geometric constraints such as tangency
requirements. It is also quite interesting to display intermediate analysis
results and stop or correct the optimization procedure. This 1leads to a
splitting of the tasks corresponding to the flow chart in Fig. 3.

The finite element analysis cf a structure and the sensitivity analysis are time
consuming tasks, which could be typically performed during the night as batch
job. The task of redesigning on the basis of these results is typically an
interactive job performed during the day. The designer has then the choice to
accept the new design and send it back to the finite element optimization code
for a new iteration, or to intervene in the optimization process and make some
of the data adjustments previously mentioned. Note however that the optimization
computer code would always be able to perform several successive optimization
iterations in order, for instance, to conclude an optimization process.



This scheme requires thus an interactive engineering design system, capable of
displaying all the relevant information concerning the modified design. This
interactive system can be viewed as a post-processing module, called when the
design optimization process has been interrupted after a finite element analysis
is completed (including the sensitivity analysis). The system should also
contain pre-processing capabilities to allow the user to define the optimization
data and make data adjustments as the optimization process continues.

At the present stage of the development efforts, a computer program has been
developed, largely functioning as a post-processor. Is is envisaged that the
pre-processing functions will be implemented in the near future. The system
contains most of the conventional graphics displays usually found in pre- and
post-processing programs:

- representation of finite element mesh, applied loads and boundary conditions
(i.e. characteristics of analysis model);

- undeformed and deformed geometry plots (i.e. displacement analysis results);

- color-coding of elements based on specific stress components (i.e. stress
recovery results).

In addition innovative graphics capabilities were implemented in connection with
the new optimization concepts:

- visualization of the design model with the design variable locations,
together with their lower and upper limits;

- visualization of the analysis model (finite element mesh) ;

- the CONLIN optimizer can be supplied with the sensitivity data produced by
the finite element optimization code; the optimizer results can be
immediately verified with the design model plot or analysis model plot of
the modified geometry.

Note that this interactive optimization feature could be implemented because the
CONLIN method is simple enough to lead to a relatively small, well organized
computer code.

The foregoing functions allow the user to see the new shape generated after each
iteration and they represent therefore a very valuable tool to verify the
validity of the results produced by the optimizer. In addition, the user can
interact with the system, by modifying the positions of some control nodes and
examining the effect on the design model, as well as on the analysis model. This
is exactly the way the batch program uses to calculate the sensitivities through
a finite difference scheme.

Other graphic display functions include:

- evolution plots, representing the values of the objective function, design
variables and constraints in terms of the number of iterations;

- visualization of slices in the design space: the user selects significant
design variables and the program plots the corresponding 2-D design space
(contours of objective function, constraint surfaces defining the feasible



domain, location of optimum design, etc...); these graphics displays are
made on the basis of the convex linearization scheme, which constitutes an
excellent explicit approximation.

It is also possible to produce simultaneously a plot of the design model and a
plot of the design subspace. The user selects on the design model the design
variables to form the design subspace. He has the opportunity of highlighting a
behavior constraint both in the design model plot and in the design space plot.
He can have the lower and upper limits on the design variables displayed both in
the two plots.

APPLICATIONS

The purpose of this section it to demonstrate the effectiveness of the concepts
presented in this paper. As previously mentioned these concepts are quite
general and could be readily introduced into a large scale FEM system such as
MSC/NASTRAN for the analysis and sensitivity analysis, and MSC/GRASP for the
creation of the geometric design model. However the current implementation at
UCLA is restricted to two-dimensional structures in plane stress or plane strain
modeled with isoparametric eight-node elements. The computer program is oriented
toward the use on a Personal Computer (IBM PC-AT type), and as such it might be
a worthwhile addition to the capabilities of a FEM analysis package such as
MSC/PAL.

The examples given below are not meant to represent practical applications.
Rather they have been devised to illustrate the various functions of our

interactive shape optimization system.

Quarter plate under central force

The first example is concerned with the structure defined in Fig. 4a. It
corresponds to a quarter of a plate under a central acting force. The goal is to
determine the shape of the side BC which minimizes the weight of the structure,
with an upper bound on the displacement at node A. The optimization process was
started from an initially feasible design and from an initially infeasible
design. The detailed results are reported below.

The design model of the quarter plate is made up of a subregion around the side
BC with changing geometry (design element) and a subregion containing the rest
of the structure with fixed geometry. The side BC, which represents the moving
boundary of the design element, is described by a B-spline of order 4 with 6
control nodes. The design element boundary in the other direction is represented
by a B-spline of order 2 with 2 control nodes (linear). The design element is
defined as the cartesian product of these two families of curves and has thus 12
control nodes. As illustrated in Fig.4b these control nodes belong to one of
three different categories: fixed nodes, moving nodes and internal nodes.

The unknowns of the problem are the positions of the 4 moving control nodes.
These positions are determined by the distances from their respective fixed
reference poles. Hence these 4 distances are the design variables of the
optimization process. Making use of the problem symmetry only 2 decision
variables remain . The only design constraint is the displacement of
the node A in the direction of the applied load. For practical reasons, this
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constraint can be replaced by an equivalent constraint on either the horizontal
or the vertical displacement of node A, which are equal because of symmetry. In
addition side constraints are specified for the decision variables, preventing
unreasonable large displacements of the moving control nodes.

This leads to the following problem statement:

min W (xl.xz)

.t. <
s.t ua (xl,xz) £
< < X
§1 z :1 2 ;1
=2 = 2 ° 2

Fig. 4c shows the displacements obtained from a finite element analysis of the
original structure (deformed geometry plot). The initial weight is equal to
3.4865 kg; the horizontal and vertical displacement of node A are both equal to
0.16039 mm. By adopting a displacement limit W = 0.16200 mm, the initial
structure corresponds to a feasible starting point. Before calling the CONLIN
optimizer a sensitivity analysis must be performed in order to evaluate the
first derivatives of the displacement u with respect to the design variables x1
and x2.
The design space corresponding to the first subproblem created by CONLIN is
displayed in Fig. 4d. The two axes represent the design variables x. and x_.. In
this specific case the CONLIN optimizer generates a linear approximation o% the
structural weight, while the displacement constraint is linearized with respect
to the reciprocals of the design variables. Hence the contours of the weight
objective function are parallel straight lines while the constraint surface is
drawn as a curve. Clearly the optimum lies at the point where this curve is
tangent to a constant weight line. This optimum point corresponds to a new
design of the structure, i.e. the positions of the control points have been
changed by the optimizer, leading to an improved shape of the side BC (see Fig.
4e). From the modified design model, the finite element mesh is updated, the
structure is reanalyzed, and the optimizer called again in order to still
improve the design. This process is repeated until convergence is achieved to an
optimal shape. ;

The iteration history of the optimization process is summarized in Fig. 5a. One
can observe the quick convergence of the CONLIN optimizer. The optimal shape is
displayed in Fig. Sb.

A second optimization run was undertaken with a slightly different
specification. The displacement limit was reduced to T = 0.15950 mm, making the
initial structure with u =u = 0.16039 mm an infeasible starting point. The
iteration history produced by the CONLIN optimizer is summarized in Fig. 5c and
the optimal shape is displayed in Fig. 54d.

Optimization of a hole in a biaxial stress field

The second problem is concerned with the minimization of stress concentrations
in a structural component. This example has been used as key test-case to
evaluate the CONLIN optimizer when supplied with finite difference gradients,
because an analytical solution is available. :
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The plate with hole displayed in Fig. 6a is loaded with a combined tension in
two perpendicular directions. For this initial configuration, stress
concentrations will occur at the boundary of the hole. The problem is to
determine the shape of the hole for which the tangential stresses around the
hole are uniform. It can be proven that the shape of the hole with this property
is elliptic, with the ratio k of the axes being equal to the ratio of the

applied tensile stresses [11]. The value of the tangential stressof'is given by:
= 2
0. = (1+K)0, (25)
b A
k= e o L2 (26)
a )]

The problem can be formulated under the following equivalent form: minimize the
weight of the plate while constraining the maximum value of the tangential
stress. Since the tangential stress is not available in the current version of
the program, the Von Mises stress was used instead. It is believed that the Von
Mises stress around the hole is close in value to the tangential stress since
the radial stress is zero on a free boundary.

What follows 1is a description of how cne would solve this problem using an
interactive engineering design system, such as the one described in this paper.

Square plate with a circular hole

The first step which is required is the model description, using the design
element concept. Since only the shape of the hole is to be changed, an adequate
representation of the structure is to use one design element around the hole
with one changing border, and one subregion containing the rest of the plate
with fixed geometry. As the design elements are defined by their boundary
curves, it is now up to the user to specify which type of curves he wants to use
and to locate the governing points. "In this example the design element
boundaries are 2 periodic B-splines of order 13 defined by 16 poles. So there
are totally 32 control nodes, the 16 determining the inner contour are moving
and the 16 poles shaping the outer contour are fixed. The design model as
displayed by the program is shown in Fig. 6b.

This model desciption leads to a shape optimization problem, with the 16
distances between the moving control nodes and their respective fixed reference
poles as design variables. Employing the double symmetry of the problem, this
number can be reduced to only 5 design variables. The design model display of
Fig. 6b allows a clear visualization of these design variables as well as their
associated side constraints.

The next step is to generate the analysis model from the design model
description. As explained before, a mesh of isoparametric quadrilateral
elements can be generated automatically inside each design element; the mesh
inside the fixed subregion must be defined by the user. The interactive design
system can display the mesh, as well as other basic information such as
numberings, loads, support points, control nodes (Fig. 6c¢). The user can then
anticipate what will be done during the sensitivity analysis, by moving those
control nodes which are design variables and examine the effect on the finite
element model, that is the mesh deformation. The design constraints can be
specified in terms of the analysis model. Using the mesh symmetry, the Von Mises
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stress in 12 of the 24 elements bordering the hole is constrained. Note that the
mesh is not double symmetric, the reason being that in the case of periodic
B-splines there is no simple way to impose the coordinates of the point
corresponding to the initial value of the parameter describing the curve.

At this point the user is ready to submit the created data to the finite element
optimization code for the finite element analysis and the sensitivity analysis
of the initial design (one iteration). Upon completion of this job, the analysis
results (displacements and stresses) can be visualized by the interactive
system. From the Von Mises plot (Fig. 6d) one can observe the important stress
concentration afsociated with the initial design, exceeding the imposed stress
limit (260 N/mm”), resulting in an infeasible design.

Using the interactive shape optimization capability of the system, supplied with
the calculated sensitivity results, the new shape can be computed and
immediately verified with the design model plot and the analysis model plot
(Fig. 6e). This is a critical point in the optimization procedure. If the
modified shape is acceptable, the optimization process should be continued and
the new analysis model can be submitted to the FEM-sensitivity program for
another iteration. If the new shape is undesirable, the user can intervene
through the system in the optimization by modifying constraints or parameters
associated with the CONLIN optimizer. In particular for this case, since it was
seen that the initial design is seriously infeasible, no useful solution for the
optimization was found unless the relaxation capability of CONLIN was activated.
This requires the user to add acceptable increments to the constraint bounds and
provides some influence on the CONLIN results. For this purpose, it is also very
useful to be able to display slices of the design space with the interactive
system. As can be seen from Fig. 6f, showing the design space for the design
variables 2 and 4, the feasible domain is empty; with relaxation the design
space is opened and a feasible region exists.

For this example with relaxation applied during the first optimization stage,
the new shape is acceptable and additional iterations could be done. At each
iteration, similar interactive handling can be done, though the user is mostly

concerned with the display of the successive shapes. As the number of iterations

increased, it became interesting to view the progress of the optimization

process with the evolution plots of the objective function, design variables and -

constraints. From these plots it became apparent that values of side constraints
on some design variables had to be adjusted to avoid them from becoming active,
i.e., design variable 5 was close to its lower bound.

The shape obtained after 7 iterations is shown in Fig. 7a. It was decided to
stop the optimization process since satisfactory convergence was obtained to the
optimal elliptic shape with axis ratio 0.5 . As shown in Fig. 7b, the user can
also have both the initial and the optimal shape displayed simultaneously to
assess the boundary changes. The stress plot (Fig. 7c) reveals the constancy of
the Von Mises stresses at the edge of this optimized hole: the constant stress

lines run nearly parallel to the edge of the hole. This observation can also be.

drawn from the results summarized in Table 1. The user can ask for a graphical
representation of the iteration history of all quantities of interest with the
evolution plots. Fig. 7d shows respectively the weight and design variable 5 in
terms of the number of iterations; the user can assure himself with this
graphical capability of proper convergence. From the weight evolution plot it
can be seen that only at the first iteration relaxation had to be applied: it
resulted in a feasible design, as are all the subsequent designs. This can be
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verified in the design space plot corresponding to the final design (Fig. 7e),
which shows a non-empty feasible region.

Square plate with an elliptic hole

In order to further validate the interactive optimization module, a more
demanding design problem was devised. By adopting the previously obtained
optimal design (horizontal ellipse) as starting design and reversing the loading
(see Fig. 8a), a vertically elongated ellipse should be generated as the
optimal shape. As can be anticipated from the initial material distribution,
this initial design is still more infeasible than the previous one. At the first
iteration, the CONLIN optimizer using relaxation found a feasible design, one
with a very small hole (Fig. 8b) and thus with a considerable higher weight
{(peak in weight evolution plot). From this feasible design, the optimization is
proceeded, minimizing the weight and converging to the appropriate optimal shape
(Fig. B8c). A similar interactive procedure was used to reach this solution. The
evolution plots for the weight and the design variable 5 summarize some of the
results (Fig. 84).

Quarter plate model

Finally a different, more economical design model was investigated. Using the
double symmetry of the problem only one quarter of the plate need in fact to be
studied. A different design model had to be created for this purpose. The region
that can be modified was described by a 36 control nodes design element. It is
defined as the cartesian product of a B-spline of order 7 with 9 control nodes
and a B-spline of order 4 with 4 control nodes. The displacements of the 9
moving control nodes, describing the hole boundary, along the meridian
directions play the role of design variables (Fig. 9a). It was believed that by
using control node pairs at the ends of the design element moving border,
control over the tangency of the curve could be enhanced, when both pairs move
together over the same distances. As a result, these pole pairs correspond to
only one design variable and the problem has thus only 7 decision variables.

The analysis model was generated and the design constraints specified.
Constraining the Von Mises stress in the six elements at the hole boundary with
additional side constraints on the design variables, results in a much smaller
optimization problem. The optimization was done interactively but was stopped
after 7 iterations since the generated shapes were undesirable. As one can
observe from Fig. 9b, the overall shape is elliptic. However at the ends of the
curve describing the hole boundary, the tangents are not horizontal or vertical.
This would mean that for the full plate solution, we would have a discontinuity
of the tangent at these points. Note that the full plate model, using periodic
B-splines, does not have this tangency problem: the continuity requirements are
automatically satified. The trade-off is however that the full plate has to be
modeled and analyzed, increasing drastically the CPU time both for analysis and
gradient calculation.

This example, though not fully successful, shows the usefulness of an
interactive design system, to follow closely the optimization process and act
appropriately. Other geometric models might be investigated to see if better
results can be obtained.
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This paper had two main objectives. The first one was to discuss a new approach
to shape optimal design of elastic structures discretized by the finite element
method. The second goal was to describe an interactive optimization system that
is intended to become a powerful Computer Aided Design tool.

The approach followed can be summarized as follows. First the behavior of the
structure is analyzed by using the finite element method. Subsequently a
sensitivity analysis is performed to evaluate the first derivatives of the
structural response quantities: these derivatives are obtained through a finite
difference approach. They are then used by the CONLIN optimizer, which selects
an improved design. A reanalysis of the modified design is next performed after
updating the finite element mesh. This iterative process is repeated until
convergence to an acceptable optimum design has been achieved, which usually
requires less than 10 FEM analyses.

Although conceptually simple, the finite difference approach presented in this
paper reveals very promising because of its generality and ease of
implementation. Analytical derivatives for the shape optimal design problem can
also be obtained, but in a very complex way, which is dependent on the type of
finite element used. Introducing this analytical method in general purpose
finite element packages, containing a vast library of element types, would
require a huge development effort. The finite difference approach proposed
herein is on the contrary highly general, in that the scheme is valid for any
type of element, and can be implemented relatively easily.

The generality of the finite difference method is not limited to the choice of
finite elements. The method is also general with regard to the optimization
problem statement. Without too much complexity, the sensitivity analysis scheme
described in this paper can be introduced in optimal shape design under
frequency constraints, structures under thermal loading or three-dimensional
structures. Future research should be done to extend the application of the
method to those areas.

It should be recognized, however, that coupling geometric modeling concepts and
finite differencing suffers from some limitations. A drawback is that the
method is computationally expensive. In the present stage of the study no
special efforts were spent to increase the efficiency of the algorithm in this
respect, as the primary concern was to check the validity of the approach.
Further work is therefore planned to analyze how the CPU time is distributed
over the different steps and to increase the computational efficiency.

Another disadvantage is that the derivatives are of course not exact. However
the CONLIN optimizer does not seem very sensitive to this potential lack of
accuracy. Future work will be devoted to investigating the accuracy of the
derivatives, i.e. how it may be improved by selecting a suitable step size in
the finite difference scheme [12].

On the other hand the two dimensional pre-and post processor module previously
described, represents a first step in the development effort to implement shape
optimization concepts into the real design cycle. It is the interactive
component in the logical division of the optimization task between a finite
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element optimization code, producing the analysis results in batch mode
(including sensitivities), and an interactive design system, helping the
designer to control the optimization process.

At the present stage the interactive module is mainly functioning as a
post-processor. It is capable of interactive shape optimization by calling the
CONLIN optimizer, and it exhibits some innovative visualization techniques that
seem to constitute appropriate tools to facilitate the designer¥s task. Future
work should be directed toward the development of pre-processing modules,
allowing an efficient introduction of the optimization data. Additional study
can also be accomplished to devise a well organized data base for all the
information involved in the shape optimization process.
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Iteration number k

0 1 2 3 4 ) 6 7

total

weight 13.09 13.68 13.53 13.34 13.26 13.22 13.19 13.16

{kqg]

element

stresaes

(N/mm™ ]
1 312 263 253 255 257 258 259 258
2 226 246 249 257 259 259 259 258
3 113 206 231 248 253 255 257 259
4 32 156 196 219 230 236 242 249
5 65 177 212 233 242 246 250 255
6 170 230 243 255 258 259 259 259
7 273 257 252 256 258 259 259 257
8 347 265 253 255 256 258 259 258
9 398 262 255 256 257 258 259 259
10 412 257 257 258 258 258 258 258
11 408 259 256 257 257 258 258 258
12 377 264 254 255 256 258 259 259

Imposed stress limit : 260 N/mm2
Table 1 CONLIN iteration hlstory for plate with hole problem (starting from

circular hole)
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