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Introduction

Design Sensitivity Analysis for composites will soon be available in
MSC/NASTRAN. The design variables for composites can be lamina thicknesses,
orientation angles, material properties or a combination of a]l three. With
the increasing use of composites in aerospace and automotive industries, this
general capability can be used in its own right for carrying out sensitivity
analysis of complicated real 1ife structures.

As part of a research effort, the sensitivity analysis has been coupled
with a general purpose optimizer. This preliminary version of the optimizer
is capable of dealing with minimum weight structural design with a rather
general design variable linking capability at the element level or system
level. Only sizing type of design variables (i.e. lamina thicknesses) can be
handled by the optimizer.

Test cases have been run and validated by comparison with independent
Finite Element packages. The linking of Design Sensitivity capability for
composites in MSC/NASTRAN with an optimizer would give designers a powerful
automated tool to carry out practical optimization design of real 1life
complicated composite structures.
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Brief Overview of Theory

The theory of Design Sensitivity and composites is covered in
detail
here is for the sake of completeness and to serve as a backdrop for the

in References 1 and 2. The brief overview of theory presented

marriage of sensitivity and composites capability.

Composites

The user input PCOMP and MAT8 cards are converted to
equivalent PSHELL and MAT2 cards in the Preface. From this
point onwards, MSC/NASTRAN treats each element as a homogeneous
shell with these generated equivalent properties for stiffness
matrix, mass matrix, damping matrix, load vector generation.
After the system equation is solved and displacements calcu-
lated, the individual lamina properties are recovered in stress-
data-recovery module for calculation of lamina stresses and
failure indices. PCOMP and MAT8 cards are coverted to
equivalent PSHELL and MAT2 cards as follows:
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The [Gl]’ [Gz] and [G4] matrices for the equivalent MAT2 cards
are calculated as follows
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The treatment of transverse shear stiffness and calculation
of [65] is more involved and is covered in References 3 and 4.

Three types of failure theories have been implemented in
MSC/NASTRAN for the calculation of failure indices in the lamina. The
lamina is assumed safe if the value of the failure index is less than 1
and to have failed if the failure index value exceeds 1. The theories
are

1. Hill's Theory

2. Hoffman's Theory

3. Tsai-Wu (Tensor Polynomial) Theory
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Where 910 99 and g p Are the tlamina direct and shear stresses
along the principal directions and XT’ XC’ YT’ YC are the allowable
tension and compression stresses along principal directions and S the
allowable shear stress,

Design Sensitivity

Design sensitivity analysis estimates the effects of
interrelated design variables such as element properties and
materials on the structural response quantities such as
displacement, stress, natural frequency, buckling loads - and
for composites lamina stresses and failure indices. Design
sensitivity coefficients are defined as the gradients of the
design constraints with respect to the design variables at the
current design point. The method chosen for incorporation into
MSC/NASTRAN 1is called the Pseudo load technique, bhased on a
first variation (Finite difference scheme) of the systems
equilibrium equations with respect to the design variables.

Let wi(bj’ ug) be a set of design constraints which are
functions of bj design varibles and displacements ug. The
design constraints are expressed as

wi(bj, ug] <0.

The first variation in s is given as
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The matrix ?Fa can be evaluated by taking the first variation of

the systems equilibrium equation
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The elements of [gﬁiﬂ matrix for an element constraint such

g
as stress, force or failure index can be expressed by the

relationship
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The design sensitivity coefficient matrices may thus be
expressed as
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From this equation it is easy to see that the number of
additional case control records (additional Tloading cases)
required for design sensitivity analysis is equal to the number
of design variables for each subcase (Pseudo-Load Technique).

A typical term of the coefficient matrix may thus be
written as

B+AB uB B B SBuB + AB i SBuB

S"u
AB Y} )+ ( AB AB )

Aij=(s
Where B represents the base line or original state
and B + AB represents the perturbed state. The first expression
in parentheses on the right hand side is thus the change in
response quantity due to a change in design variable for the
original solution vector. The second term represents the change
in response quantity due to a change in displacement for the
unperturbed design variable. For displacement constraints, the
first term in parentheses on the right hand side is identically
zero.

Optimization Concepts and Convex Linearization

In order to validate the new design sensitivity capability for
composite structures, it was decided to introduce a numerical
optimization module in a special version of MSC/NASTRAN. It has then
become possible to solve some well documented structural optimization
problems, and to compare the results with those produced by other
finite element systems having similar sensitivity and optimization
capabilities. In our opinion this pilot implementation represents the
most complete and reliable way of verifying that the sensitivity
analysis results are correct and accurate enough for a meaningful
exploitation. It should however be mentioned that only sizing type of
design variables (i.e. lamina thicknesses) are permitted in our
optimization module. This 1is because no proper formulation is
currently available to deal with optimization problems involving other
types of design variables (e.g. orientation angles and material
properties).



Any idealized structural system can be described by a finite set
of quantities. In particular a finite element model 1is characterized
by the node coordinates of the mesh, the types of elements, their
thicknesses and material properties, the applied loads and boundary
conditions, etc... Some of these quantities are fixed in advance and
they will not be changed by the redesign process (prescribed
parameters). The others are the design variables; they will be
modified during each redesign process in order to gradually optimize
the structural system. A function of the design variables must be
defined, whose value permits selecting different feasible designs; this
is the objective function (e.g. weight of an aerospace structure,
deflection at the tip of a beam). A design is said to be feasible if
it satisfies all the requirements that are imposed to the structural
system when performing its task. Usually requiring that a design be
feasible amounts to assigning upper or Tlower limits to quantities
describing the structural response, Most often these behavior
constraints are placed on stresses, displacements, frequencies, etc...
Additional design constraints may be introduced for fabrication or
analysis validity considerations (e.g. minimum thickess).

Structural optimization methods using finite element models have
now reached a high level of reliability and efficiency. These methods
can currently address practical problems involving various types of
design variables (e.g. component transverse sizes, shape variables) and
design ‘constraints (e.g. geometry requirements, maximum allowable
stresses, bounds on deflections or frequencies). In addition the types
of finite element models tractable by these methods have recently been
largely extended so that virtually all finite element models that can
be analyzed can now be addressed by optimization techniques (e.g. bar,
beam, membrane, plate, shell),

A numerical optimization problem is characterized by a given
objective function f(x), which is to be minimized by determining the
magnitudes of design variables x, such that certain constraints on the
X;'s are achieved. This leads to a mathematical programming problem of
the “primal" form: '

minimize f(x)



such that hj(x) >0 i=1,2,...,m

X: » X: » X i=1,2,...,N

where m 1is the number of behavior constraints and n, the number of
design variables.

Such a problem can be solved iteratively by using numerical
optimization techniques. tach iteration begins with a complete
analysis of the system behavior in order to evaluate the objective
function and constraint values along with their sensitivities to
changes in the design variables (i.e. first derivatives). A design
iteration is concluded by employing the results of these behavioral and
sensitivity analyses in a primal minimization algorithm which searches
the n-dimensional design space for a new primal point that decreases
f(x) while remaining feasible (i.e. satisfying the constraints
hj(x)). Many such iterations are usually required before achieving the
optimum design. Until recently, because of the high computation cost
of each iteration (full FEM analysis), structural optimization
techniques based on primal algorithms have been only conceivable on
powerful main frame computers.

An alternative to this primal formulation is the so called "dual"
approach [5], in which the constrained primal minimization problem is
replaced by maximizing a quasi-unconstrained dual function depending
only on the Lagrangian multipliers associated with the behavior
constraints., These multipliers are the dual variables subject to
simple non-negativity constraints, The efficiency of this dual
formulation is due to the fact that maximization is performed in the
dual space, whose dimensionality is relatively low and depends on the
active constraints at each design iteration. The dual approach is
especially powerful when wused 1in conjunction with approximation
concepts [6]. In particular, the convex linearization scheme (CONLIN)
[7], recently introduced to solve general structural optimization
problems, exhibits very good performance, even when dealing with the
inherently difficult problems involving changes in geometry.

In CONLIN each function defining the optimum design problem is
linearized with respect to appropriate intermediate variables (called



"mixed" variables) yielding a convex, separable problem
approximation. The initial problem is therefore transformed into a
sequence of explicit subproblems having a simple algebraic structure.
The convex linearization scheme exhibits remarkable properties that
makes it attractive to replace the original primal subproblem by its
dual [5]. CONLIN can be viewed as a generalization of well established
approaches to pure sizing structural optimization problems, namely
"approximation concepts" and "optimality criteria" techniques [8], and
as such it is capable of addressing a broader class of problems with
considerable facility of use.

Because of its many attractive features the CONLIN algorithm has
been selected to implement optimization capabilities in our pilot
program. At each successive iteration point, the CONLIN method only
requires evaluation of the objective and constraint functions and their
first derivatives with respect to the design variables. These
informations are provided by the FEM analysis and sensitivity analysis
results, The CONLIN optimizer will then select by itself an
appropriate approximation scheme on the basis of the sign of the
derivatives. CONLIN benefits from many interesting features

« the CONLIN approach is very general, requiring only values
and derivatives of the functions describing the
optimization problem to be solved; it permits therefore
straight interfacing to the FEM software;

« because it is based on conservative approximation concepts,
CONLIN does not demand a high level of accuracy for the
sensitivity amalysis results, which can therefore be
obtained by finite differencing;

« CONLIN usually generates a nearly optimal design within
less than 10 FEM analyses;

« CONLIN has an inherent tendency to produce a sequence of
steadily improving feasible designs;



the CONLIN method is simple enough to lead to a relatively
small computer code, well organized to avoid high core
requirement.

These features have considerably facilitated the implementation of
reliable and efficient optimization capabilities in our special version
of MSC/NASTRAN.

User Interface

The DSCONS and DVSET bulk data cards will contain information to
specify the design contraints and element property parameters for
composites. The remaining cards will require no modification. Both
stresses and forces must be requested in the case control deck for
elements for which lamina stresses or failure theories are design
constraints. MSC/NASTRAN will not generate lamina stresses or failure
theories, unless both forces and stresses are requested for the
pertinent elements in case control. If PARAM, N@PCOMPS is set to -1,
stress output for individual plies will be suppressed. In addition,
fields 5 and 6 on the PCOMP card - Sb (allowable shear stress of the
bonding material or allowable interlaminar shear stress) and failure
theory (Hi11, Hoffman or Tsai-wu) must be specified if failure index
information is desired or when failure indices are design constraints.

The DSCONS bulk data card specifies output quantities such as
element forces and stresses, displacements, natural frequencies and
buckling load factors as design constraints. For composites, two
additional design constraints - the lamina stress and failure index
have been added. The modified DSCONS card is shown in Figure 1.
Specification of CSTR (Composite Lamina Stress) or CFOR (Composite
Failure index) will be specified in field 4 of the DSCONS card. The
limit value for failure index is 1.0. For specification of component
in field 6 of DSCONS card, Tables 1 and 2 give lamina stress and
failure index item codes. For example, if Normal-1 stress in lamina 5
of the element is a design constraint, the component in field 6 of
DSCONS card would be equal to 11 *(5-1) + 3 = 47, with CSTR being



specified in field 4 of the DSCONS card. Similarly if failure index
for direct stresses in lamina 4 of the element is a design constraint;
the component in field 6 of the DSCONS card would be equal to 8 *(4-1)
+ 5 = 29, with CFOR being specified in field 4 of the DSCONS card. In
general for the nit_lamina, the components for stresses and failure
indices respectively are given by

COMP s hass = 11 *(N-1) + ITEM number

COMPE ;. 8 *(N-1) + ITEM number

For composites, TYPE in field 3 of the DVSET card shown in Figure
2 will be PCOMP. The element properties may be thickness, orientation
angle or material ID for any lamina in the element. The design
variable 1is 'FIELD' specified on the 4th field of the DVSET card.
Whenever a material card is used as a design variable, the design
sensitivity bulk data deck must contain all of the original material
cards from the base line run plus all of the varied material cards. In
addition, for composites, if the material ID specified on a PCOMP card
is used as a design variable, the design sensitivity bulk data deck
must contain all of the original PCOMP cards from the base line run in
addition to all of the original material cards from the base line run
plus all of the varied material cards.

A footnote is in order here. It is quite possible that a user may
wish to use the PCOMP as a design variable (say the thickness in a
particular lamina), and may wish to use the element stress or force (as
opposed to lamina stress or failure index) as a design constraint. He
can do so by specifying STRESS or FORCE as a design constraint on the
DSCONS card and using PCOMP in field 3 of the DVSET card.,

For optimization in addition to specifying the design constraints
and design variables, it is necessary to supply minimum and maximum
side constraints. The normalized values of the side constraints can be
input conveniently by means of the DTI cards - wherein the first record
contains the normalized values of the minimum sizes and record 2
contains the normalized values of the maximum sizes. The calculation
of structural mass, derivative of the objective function (structural
mass) with respect to the design variables, the constraints and the



sensitivity coefficients are calculated internally in MSC/NASTRAN. A1l
the arrays are normalized with respect to the design variables.

An initial analysis is carried out to identify critical
constraints and a data base created. In the succeeding run,
information about constraints, design variables, maximum and minimum
side constraints is supplied. Special DMAP package was created which
exploits the data base technology.

The user can control the number of iterations performed. He can
restart from the previous step. This is especially convenient, as he
can scan the output and intervene manually to either add or delete
constraints or modify design variables. Table 3 gives a schematic
diagram of the program flow.

Numerical Examples

Two example problems were chosen to validate the capability and to
highlight some of the salient features.

EXAMPLE 1

RECTANGULAR PLATE WITH A CIRCULAR HOLE.

A rectangular plate with a circular hole 1is subjected to a
specified displacement along the x-direction. The quarter model of the
plate is shown in Figure 4, The plate is modelled using QUAD4
elements. FEach element consists of 4 laminae stacked at 0°, 45°, 90°
and -45° respectively. The region near the hole is divided into 13
regions. The 0° lamina for each of the 13 regions is treated as a
single design variable. The laminas at 45° and -45° are linked and are
treated as a single design variable for each of the 13 regions.
Similarly the 90° lamina is treated as single design variable for each
of the 13 regions. Thus there are a total of 39 design variables for
this problem. The model consists of 288 QUAD4 elements and 317 grids.

The design constraints are the failure indices using the Hill
Criterion Selected for different lamina in specified elements. The
model was optimized for these selected constraints., The results are



shown in Figures 8 and 9 and Table 4. The results were examined after
iteration 5 to examine if the Failure index exceeded 1 for any of the
elements which were not specified as constraints originally. The
violated elements were input as constraints and the optimization loop
started from this point onwards. The algorithm converged in 9 loops.

Figure 8 is a plot of the objective function (structural mass)
versus the number of iterations. Figure 9 shows how a typical
constraint converges as a function of the number of iterations. As can
be seen, the user can intervene at specific points in the algorithm and
monitor the progress., This capability is particularly important and
convenient for realistic design of structures.

EXAMPLE 2

The second demonstration problem is a delta wing structure with
graphite epoxy skins and titanium webs subjected to pressure loading
and temperature loading. The wing is shown in Figures 5 and 7. The
problem has been previously studied for frequency constraint in
Reference 6. The structure is symmetric with respect to its middle
surface which corresponds to the x-y plane in Figure 5. The skins are
assumed to be made up of 0°, +45° and 90° high strength graphite epoxy
laminates. It is understood that orientation angles are given with
respect to the x reference co-ordinate in Figure 5, that is material
oriented at 0° has fibers running spanwise while material at 90° has
fibers running chordwise. The skins are represented by QUAD4 and TRIA3
membrane elements and the webs are represented by shear panels.
According to the linking scheme depicted in Figure 6, it can be seen
that the total number of independent design variables is equal to 60
made up as follows: 16 for 0° material, 16 for +45° material, 16 for
90° material and 12 for the web material. The model contains 56 QUAD4
elments, 12 TRIA3 elements adn 142 shear panels. The total number of
nodes is 132.

The design constraint was the maximum deflection at the tip of
wing equal to 10.0 in. The results are shown in Figure 10 and 11 for
the objective function and the tip deflection for the number of
iterations.



CONCLUSIONS

The design sensitivity capability for composites to be available
in Version 66 of MSC/NASTRAN was designed for generality, whereby the
design variables can be lamina thicknesses, orientation angles,
material properties or a combination of all three. It is envisaged
that this capability would constitute a powerful first step towards
optimizing composite structures. A

Futhermore as part of a research effort MSC/NASTRAN was linked to
a general purpose optimizer CONLIN for fully automated structural
design synthesis. The coupling of a large scale Finite element package
like MSC/NASTRAN with a powerful optimizer 1ike CONLIN would give
designers a powerful tool to carry out practical optimization of real
life complicated structures. It should however be mentioned that only
sizing type of design variables (i.e. lamina thicknesses) are permitted
in our optimization module. This is because no proper formulation is
currently available to deal with optimization problems involving other
types of design variables (e.g. orientation angles and material
properties).

A unique feature of the coupling is the capability for the user to
intervene at any stage of the redesign process and to modify design
constraints or design variables and to carry on from the previous
stage. Man-machine 1interaction is an essential ingredient for
realistic optimization of structural problems.
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Tables 1 and 2 are the composites equivalent of the element depen-
dent data, Section 4.3 of User's Manual for tables of element Stress

and Force {tem codes.

Component
1

W O N O 0 & WU N

—
- O

Item \

Element ID

Ply Number

Normal - 1

Normal - 2

Normal - 12 Rzgz:tp:;r
Shear - 12

Shear - 27

© - Shear angle
Major Principal
Minor Principal
Max-Shear

Table 1

Composite element stresses for QUAD4, TRIA3, QUAD8 and TRIA6.

Component
1
2-3
4
5

\

Item
Element ID or -1
Theory or blank

Ply Number R t f

or
FP (failure index for direct :ﬁﬁ: ply
stresses)

FB or -1 (failure index for
interlaminar shear-stress)
MAX of FP, FB or -1

Failure Flag

Table 2

Composite element failure indices for QUAD4, TRIA3, QUAD8 and TRIA6



INITIAL ANALYSIS

v

CREATE DATA BASE

SENSITIVITY

\AY

ANALYSIS

CONLIN OPTIMIZER

\ 4

UPDATE DESIGN VARIABLES

\Z

MSC/NASTRAN ANALYSIS

PRINT RESULTS

v

UPDATED DATA BASE

CHANGE CONSTRAINTS OR
CHANGE DESIGN VARIABLES
CREATE NEW NASTRAN DECK

PRINT RESULTS

TABLE 3




ITERATION

WEIGHT

9% 9% O3 04 Og
NUMBER 1(00) | 1(45) | 2(00) | 2(-45) | 3(00)

1 .3562 |1.1632 |1.1421 - - -
2 .3545 | .9446 | .9076 - - -
3 .3541 |.9886 | .9238 - - -
4 .3540 |.c948 | .9160 - - -
5 3539 |.99817 | .9164 - - -
6* 3612 [1.2517 - 1.2079 | 1.2299 [1.1118
7 .3600 |.94754 - 9454 | 9601 | .9092
8 .3509 |.98164 - 9777 | 2982 | .9382
9 .3599 |.98289 - 9793 | 9997 | .9400
10 3599 |.98244| - 9795 | .9998 | .9405

* User Intervention

TABLE 4




DATA DECK

Input Data Card DSCENS Design Constraint

Description: Defines a Design Constraint

Format and Example:

1

2 3 4 S ] 7 s 9 0]

DSCANS

DSCID LABEL] TYPE 1] Comp LIMIT grT

DSCENS

21 COMPOS} CSTR 10 3 25.0+€3 MAX

Fleld
DSCID

LABEL
TYPE

ID

Comp

LIMIT
gprT

Remark :

Contents

s

ggé;gg constraint identification number (Integer > 0). Must be unique for all
N .

Label used to describe constraint in output (BCD)
Type of constraint:
DISP OISPLACEMENT
STRESS ELEMENT STRESS
FORCE ELEMENT F@RCE
CSTR LAMINA STRESS IN ELEMENTS FOR COMPOSITES
CFER FAILURE INDEX FOR A LAMINA IN ELEMENT FOR COMPOSITES
LAMA EIGENVALUE or BYCKLING LPAD FACT@R
FREQ FREQUENCY

Identification number of constraint, {.e. GRID 1D, ELEMENT 1D, or MADE NUMBER
{Integer > 0)

Component/Item to be constrained (Integer > 0)

For grid point components, refers to X, TY, TZ, RX, RY and RZ using 1, 2, 3,4, 5
and 6, respectively,

For scalar points, a value of 0 is used.

For element dependent data, refer to Section 4.3 for tadbles of Element Stress and
Force [tem codes.

For Buckling and Normal Modes CZMP 1s not used.
Value of 1imit (Real) (Default = 0.0)
Constraint equation option (BCD - MAX or MIN). (Default is MAX)
1f PPT {s MAX then:
Y- (Q?,g%%%!iﬁ, - 1. * s1gn(LINIT)) (If LINIT # 0)

Y = Constraint (If LIMIT = 0)
if PPT is MIN then:

v = (1. * sign(LIMIT) - -Q‘I?%%gg%»ﬂ& (1€ LIMIT # 0)
v = -Constaint (If LIMIT = 0)

DSCONS cards must be selected in case control (SET2 includes DSCID).

FIGURE 1




Input Data Card

Description:
Vﬁ??aﬁge

NASTRAN DATA DECK

DVSET Desfgn variable Set Property

pDefines a set of element properties which vary 1in a fixed relatfon to a design

Format and Example:

1 2 3 4 5 6 7 8 9 10
DYSET viD TYPE FIELD PREF ALPHA P101 P102 PI1D3
OVSET 21 pCaMP 13 .20 1. 99 101 110 ABCl
P104 PIDS etc.

+8C1 111 122
ALTERNATE FORM (1)

DYSET viD TYPE { FIELD PREF ALPHA PI01 “THRU" P102

DVSET 21 pcgmp 13 .20 1. 101 THRU 105
ALTERNATE FORM (2)

DVSET viD TYPE FIELD MIDY PID1 p1D2 P103

OVSET 21 o} 12 134 57 )

Field Contents

vID Identification number (Integer > 0)

TYPE Type of element property card, e.g., PSHELL. (See Remark 7.)

PID Property card identification number (Integer > 0)

FIELD Word number on the element property card to be varied. {Integer > 2). Field
number for the Nth continuation property cards fs 10 * N + FL where FL is the local
field number of the continuation card. (See Remark 6.)

PREF Reference value for element property {Real # 0.0 or blank}.

MIDY Material {identificatfon of material property after a design change of DELTAB (See
DVAR card). Note FIELD must specify a material 1D field on the property card.
{Integer > 0).

ALPHA Exponent, alpha, of the actual element property versus the design variable

(Real # 0.0) (Default = 1.0)

FIGURE 2

(Continued)



BULK DATA DECK
DVSET (Cont.)

Remarks: 1. There 1s no restriction on the number of DVSET cards which may reference a given
T vID.

2. If PREF {s blank, the corresponding value on the property card will be used. Non-
blank PREF values are required when the basic property value 1s 0.0.

3. The form of PREF {s
- alpha
PPyt P op™ (8 - 1.0)
4. The form of MIDV {s
alpha
M= My + (MIDV - M)/DELTAB * (B _? - 1.0)
5.  MIDV material states correspond to a design vari * s at g = (1. + a8B).

6. For the BEAM and BEND elements, FIELD fs a negative integer and corresponds to the
WORD number {fn the EPT section of the EST table 3s described in Section 1.15,
preceded by a minus sign.

7. DVSET cards are selected by DVAR Bulk Data cards.

8. Since this card references only property cards (°Pxxx"), this {fmplies that only
elements with property cards my be used as design variables. This excludes
elements such as CONR@Ds and CONM2s. However, these elements may be designated as
design constraints {f they have force or stress output.



BULK DATA DECK

Input Data Card DVAR Design Variable

Description:

Defines a Design Variable for a Design Sensitivity Analysis

Format and Example:

1 2 3 4 5 6 7 8 9 10
DVAR BID LABEL DELTAB VID vID viD vIiD VID
DVAR 10 LFDOGR .01 2 4 5 6 9 ABCl
VID ' etc.
+BC1 10
Field Contents
BID Design variable identification number (Integer > 0). Must be unique for all DVAR.
LABEL Label used to describe variable in output (BCD)
DELTAB The change 4B in the dimensionless design variable, B, to be used in the calcula-
: tion of the design sensitivity coefficients. (Real) (Default = .02)
vID Identification number of DVSET card(s).
Remarks: 1. DVAR cards must be selected in case control (SET2 includes BID).

FIGURE 3
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Figure 5. Delta Wing Analysis Model (Problem 2).



Figure 6. Delta Wing Design Model (Problem 2),
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