SUPERELEMENT PLANNING, DATA MANAGEMENT,
AND MULTIPLE BOUNDARY CONDITIONS

WRITTEN BY

ROBERT F. COOKE, PH.D
BOEING COMPUTER SERVICES COMPANY
565 ANDOVER PARK WEST
TUKWILA, WASHINGTON 98188

PRESENTED AT

MACNEAL-SCHWENDLER CORPORATION’S
USER CONFERENCE IN
PASADENA, CALIFORNIA
MARCH, 1986




ABSTRACT

This paper discusses three critical issues affecting finite element method (FEM) analysis
of large NASTRAN models using Superelements: planning, data base management, and
multiple boundary conditions. Significant progress has been made in each of these areas
which in turn provides project management with greatly improved control, visibility, and
efficiency (reduced analysis cost). A data base management modification is presented
which reduces long-time disk requirements by 80% and facilitates combining subeases.
A strategy and DMAP for combining subeases is presented. A Superelement spreadsheet
is presented which displays on one sheet of paper the Superelement plan, bookkeeping
information, and the implementation status of a multi-run job. This spreadsheet is the
key to understanding the interrelationship between jobs, data bases, data base sets, disk
files, magnetic tapes, SEID, and SEID operation. This visibility is required for planning,

execution, restarting, and error analysis.



1.0
2.0

3.0

4.0

5.0

6.0

CONTENTS

Page
INTRODUCTION 1
MULTIPLE BOUNDARY CONDITIONS 4
DATA BASE MANAGEMENT 9
Table 3-1 12
Table 3-2 13
Table 3-3 14
PLANNING - SUPERELEMENT SPREADSHEET 15
Table 4-1 17
SUMMARY 19
GLOSSARY 20
APPENDIX A - MSC/NASTRAN DATA RECOVERY 21
APPENDIX B - NASTRAN DATA 22
APPENDIX C - SUPERELEMENT SOLUTION PROCEDURE 23
APPENDIX D -- COMBINING SUBCASES BY DMAP

D1 COMBINING LOADS 25
D2 COMBINE RESULTS, TWO BOUNDARY CONDITIONS 27

D3 COMBINE RESULTS, TWO BOUNDARY CONDITIONS,
TWO CONFIGURATIONS 29
D4 FORTRAN GENERATED SUBCASES 31
D5 DBSET 5 - LOADS, DISPLACEMENT 37
D6 DBSET 6 - KOO, LOO, GOAT 40
APPENDIX E - MAXIMUM SIZE OF A DBij 42



SUPERELEMENT PLANNING, DATA MANAGEMENT,
AND MULTIPLE BOUNDARY CONDITIONS

1.0 INTRODUCTION

The use of Superelements is almost intrinsically required when you have large models,
large projeets, limited machine resources, and/or special types of analysis. For a
structure represented by a large model having 10,000 grid points or more (with several
boundary conditions and a computer of your choice), significant problems must be

addressed before and during the analysis.

First, analyzing a real model this size will require a staff of some 100 people who

support and are supported by the FEM analysis. A staff of this size is typically )

organized into teams. Each team is responsible for a portion of the model, which may
be indentified by Superelements, and supplies input acéordingly. Each team expects
output (data recovery) for only their area of responsiblity on a timetable determined by

their individual needs and schedule.

To support each team's individual output requirements it is possible to run all data
recovery (SEDR) in one job and leave it to the entire staff to sort through this one
monstrous printout. This is not a practical approach since it could consist of some two
to twenty boxes of paper. Thus it follows that many customized SEDR jobs are required
to circumvent this situation. To do this successfully, we think of each user of data (e.g.,
stress analyst) as a customer. The customer is supplied SEDR upon request. Early in
the project, as part of the planning phase, each user is requested to'supply requirements

for SEDR. Following completion of the NASTRAN execution and certification (that the

Page-1-



model appears good, e.g., no mechanisms), the scheduled SEDR are launched.

Examination of these results usually suggests additional SEDR for the purposes of:

° Resolving problems as to modeling, execution, NASTRAN

limitation, or actual designs

L Understanding load paths

e Studying critical areas

Stringent weight/cost design criteria or evolutionary structural arrangements tend to
require more attention to design/analysis detail and hence more SEDR on an ad hoc
basis. Thus, SEDR may be required over a period of several weeks whereas, the actual

solution execution may only take several days.

Secondly, Superelement solutions do not loop on boundary conditions. Results must be
suitably combined to avoid confusion by the staff. That is, engineers expect results for

left/right sides not symmetric/antisymmetrie half models.

Thirdly, there is a problem with the economics of data storage. Data storage on
magnetic tape is cheap, but it is also slow and not as reliable as on disk. Disk storage is
fast and reliable, but it is expensive and limited in size and availability. Obviously, we
would like to use tape for the large, infrequently used data blocks and disk for small,
frequently used data blocks. Recall that matrix crunching takes several days whereas

SEDR may be sporadic, interactive and span several weeks.

Page -2 -



Fourthly, the complexity involved when satisfying many customers as efficiently as
possible (runs, boundary conditions, data base, DBSET, disk files, tape) causes

bookkeeping problems which must be solved.

In light of these factors, specific methodologies and techniques have been developed
which: (1) systematizes the planning/coordination process culminating in a solution
coordination spreadsheet; (2) automates the processing of multiple boundary conditions
utilizing DMAP; and (3) improves the economics of NASTRAN usage through effective

data storage management.

This paper describes the methodologies and techniques developed as part of the

disciplined approach found necessary to solve large NASTRAN Superelement problems.

Page - 3 -



2.0

Superelement solutions in NASTRAN (SOL 61, 64, 69) do not loop on boundary
conditions. Only one boundary condition request (SPC) is honored per run. A technique
has been developed to handle multiple boundary conditions using DMAP. Prior to
developing this approach, several alternatives were considered but were not used for the
reasons mentioned below.

choosing the Superelement tree, or requires the execution of the entire model for each

MULTIPLE BOUNDARY CONDITIONS

boundary condition.

SOL 24 With Alters RF24D13A And RF24D13B

This technique is not attractive for large models because it
requires a DECOMP for each boundary condition for the entire
model. Also, restarts to add load cases may trigger DECOMP.
This method is attractive for small models, but is unattractive
when checking out the model with symmetric boundary conditions
before proceeding to antisymmetric conditions (conelusion based

upon a bug encountered in Version 61).

Cyclic Symmetry

This technique requires that the CYJOIN grid points be added to
the Residual Superelement. This restriets choices on
Superelement definition, and would invariably cause a larger
number of Superelement boundary degrees of freedom, resulting

in inereased machine CPU cost.

Page -4 -

Each of these techniques either restricts flexibility in



L MSC Application Note August, 1983

This Note describes a DMAP alter applicable to SOL 61 if all
changed constraints (SPC and MPC) are in the Residual
Superelement. This is not economically attractive if we have
configuration changes via SEEXCLUDE in which we would like to
promote upstream grid points on the centerline of a symmetric

half model.
® External Superelements

This technique does not permit data recovery in the external

Superelement.

The method developed to handle Superelement solutions for multiple boundary
conditions involves a DMAP procedure that relies on an intimate understanding of how
MSC/NASTRAN performs data recovery. The method developed performs a separate
execution for each boundary condition. This can be done for both SOL 24 and SOL 61.
SOL 61 is preferred if the model is large and can be partitioned such that at least half
the model has unchanged constraints (SPC, MPC). This is to be expected for
symmetrie/antisymmetric boundary conditions. Only the SEID which have changed
boundary conditions (aé well as their downstream SEID) need to be executed for more
than one boundary econdition. This technique offers the greatest machine cost
effectiveness and avoids the restrictions of the techniques mentioned earlier. A
description of the data recovery process appears in Appendix A. The multiple boundary

condition procedure is outlined in the following series of steps.

Page -5 -




Place as much of the model as possible (practicél) that is common
to all boundary conditions/ configurations in upstream
Superelements, and execute SEMG, SEMA. This step is an
economic (machine CPU) consideration and may not be desirable

for small models.

Execute SEMG, SEMA for each boundary condition and model

configuration.

Execute SELG, SELA, SEDR for the entire model, for each SEID,
boundary condition, and configuration. Each job should save on a
distinct data base UGVS, QGS, PG, and PJ. A data base printout
should be checked to verify that UGVS is present for each
Superelement. Subsequent data recovery requires only UGVS,
QGS, PG, PJ, and the SEMG data bases. The large data blocks
such as GOAT, KOO, and LOO are no longer required for
additional data recovery. It is important that SEDR must be

performed for each SEID.

Combine results via DMAP

The results are combined by using a DMAP sequence to

solve the equation:

Uu = Ug * FACTs + Ug * FACT;y

Page-6-



where:
U = solution vector (PJ, PG, QGS, UGVS)

FACT = DMI matrix specifying how subeases are combined

Subseripts are:
a = antisymmetric component
s = symmetric component

u = unsymmetric combination

The DMI factors specify how the component subcases are
combined. See Appendix D1. Note that the DMI are diagonal

matrices for purely symmetrie boundary conditions.

The DMAP sequence (Appendix D2) loops on each SEID in SLIST
(words 1, 8, 15, . . .) obtained from the SEMAP via module SEP3.
Datablock ULV (or data name SDRI1DONE) is stored to avoid

triggering SDR1 in residual SEDR.
Machine Generated DMI and SUBCASE

Special care needs to be taken because the data blocks being
combined contain no subcase identification. It is easy to make a
DMI or subcase mistake and get the wrong combined results. The
approach developed avoids these human mistakes by using a
FORTRAN program (Appendix D4) to read the subecase pointers
and write the DMI and subcase for all jobs (S, A, U). However,

even with automated procedures a manual check of dispiacements

Page-7-




for one grid in each subcase and SEID is mandatory. See
Appendix D4 for the FORTRAN program, example input

parameters (subcase pointers), and example DMI/subcase output.

A closely related problem is the handling of moveable Superelements for structures with
moveable or removable parts, such as the flaps on an airplane or the bucket on a crane.
For such structures it can be a simplification to have (in one printout) SORT2 type data
recovery for all combinations of boundary conditions and model configurations. This is

accomplished by:

° Using a unique SEID for each position (location) of the moveable

part (configuration).

L Separate SEMG and SELG computer runs as required to satisfy
uniqueness of both grid and element numbers. Uniqueness is
required for input processing and partitioning the bulk data into
Superelements (GEOMiS). Uniqueness is not required at the data
block, data base level. Hence, separate models are not required

for each position, just separate CORD cards defining the position.
o SEEXCLUDE as required.
It is noted that the temperature loads and enforced displacements which are not

common to all boundary conditions require the combination of tables DIT and ETT via

direct table input (DTI). In our experience, this has not been required or attempted.

Page - 8 -



3.0 DATA BASE MANAGEMENT

This seetion discusses DBSET modifications to enable:
1. Use of multiple boundary conditions and,
2. Economical use of database storage

Large models generate large amounts of data such that storage on disk for one week can
exceed the CPU cost of generating the data. Storage requirements grow as the "3/2
power" with the number of grid points as shown in Table 3-1. The usual alternative is to
save the data on a less costly media; dismountable packs or magnetic tapes rather than
on-line disk. However, large multi-run substructured models having multiple boundary
conditions and/or data recovery jobs may require hundreds of tape mounts involving tens
of tapes. This reduces disk cost at the expense of labor, throughput, and reliability.
Neither extreme is acceptable. The problem becomes more pronounced for lafger
models and for vector machines. This section extends the insight into the data bloeks
required for multiple boundary conditions and discusses the DBSET feature to split data
bases. This reduces disk cost (up to 80%) and/or magnetic tape cost so that it is

economical to support many SEDR jobs over an extended period of time.

3.1 UNMODIFIED MSC/NASTRAN DATA BLOCK STORAGE

Data blocks are presently stored by MSC/NASTRAN on a database via the DBSTORE

command. In general all data blocks are directed to a DBSET defined as follows:

Page -9 -




DBSET1 - contains data internal to a Superelement such as:
ECT, BGPDT ...
KOO, L.OO, GOAT
KFS, KSS, KSF

uGv, PG, QG

DBSET 2 -- Contains boundary data, or data required for
downstream processing such as:

KAA, PA

3.2 PROBLEM WITH THE UNMODIFIED DATA BLOCK STORAGE
CONVENTION

For our requirements of multiple boundary conditions and multiple SEDR, the following

problems exist with the present convention:

1. The loads data blocks (PA, PG, . . .) occur in both DBSET 1 and 2
and are not uncoupled from the model data blocks. This could

cause confusion or duplication of some data blocks.

2. DBSET 1 contains KOO, LOO, GOAT which is about 80% of the
total data space (Table 3-1) and, is not needed after the initial

SEDR (Table 3-3).

The data blocks KOO, LOO, GOAT comprise about 80% of the data space (Table 3-2).

These data blocks are created in an SEMA operation. Subsequently, they are used only

Page - 10 -



for SELA and an "initial" or "branch" SEDR as shown in Table 3-3 and Appendix C. This

suggests storing KOO, LOO, and GOAT on tape leaving all other data on disk.

3.3 THE SOLUTION: REDIRECT DATA BLOCKS

A DMAP alter has been developed to redirect selected data blocks as shown in Appendix

D5, D6. This alter creates two DBSETS:

. DBSET 5 -- all load, displacement data

° DBSET 6 -- KOO, LOO, GOAT plus other miscellaneous data

not needed after the first data recovery

These alters redirect specified data blocks to a different DBSET and nothing more. The
user has control of disk files (DBij) and file size via the NASTRAN card which specifies

each DBSET as a collection of DBij. This topie is discussed further in Appendix B.

These alters uncouple load data from model data for multiple boundary conditions and
split KOO, LOO, GOAT onto their own database. This database represents 80% of the
data space required, is infrequently used, and therefore should be stored on tape not

disk.

In summary, these modifications enable multiple boundary conditions and multiple disk
based SEDR to be run over an extended period of time with 20% of the total disk cost

associated with the unmodified convention.

Page - 11 -




196,000,000

128,000,000

64,000,000

E=.

-

o

Zad

0

Formula: 3 3
HANDBOOK FOR S.E.A. S = 5
PAGE 4.3.3.1 2 1,000G + 30G

TABLE 3-1
DATABASE SPACE REQUIREMENTS

KOO, LOO, GOAT
KFS, KSS, KSF,LLL

2,000

P ALL OTHER DATA BLOCKS

4,000 6,000 8,000 10,000 12,000 14,000 16,000

G

G = Number Of Grid Points
S = Words [Long Word Machine]

-12-



TABLE 3-2

SIZE OF DATA BLOCKS FOR TYPICAL S.E.

EXAMPLE: GRIDS = 1,707 BLOCKSIZE = 1,792 Words
ELEMENTS = 6,600
DOF. G = 10,242
S = 2,538
F = 7,704
O = 689
A = 810
%
SPACE DBSET DATABLOCK NUMBER OF BLOCKS*
ECTS 33
ESTS 102
GPECT 52
KELM, KDICT 208
OTHER 60
9.1 1 SUBTOTAL 464 464
KOO 149
LOO 1,469
GOAT 2,504
KFS, KSS, KSF 38
KGG 189
85.4 6 SUBTOTAL 4,349 4,349
2 KAA 263 263
UGVS QGS 6
OTHER 19
5.2 5 SUBTOTAL 25 25
100.0 TOTAL 5,101
* SMALL DATA BLOCKS NOT SHOWN INDIVIDUALLY

-13-




Q -

Downstream
[SEMA,SELA]

KGG, PG

\ 4

KOO, LOO, GOAT
KAA PA

Superelement

TABLE 3-3

TiP

COLLECTOR

= Data Block

-14 -

BRANCH PROCESSING

O

$5G3
SDR1

Upstream [SEDR]

(Initial SEDR)
UGV, Q6
A
K00, LOO,
KSS, POS
uLv

Module (Subroutine)




4.0 PLANNING - SUPERELEMENT SPREADSHEET

Planning and organizing are the key to successful use of multi-run Superelements.

preparation of the plan attention should be given to:

® Objectives

® Assumptions

L Boundary conditions (which SEID have multiple SPC)

L Schedule
(a)
(b)
(c)
(@)
(e)

--  availability/requirements for:
model

properties

loads

results (data recovery)

restarts-add load cases, sensitivity studies

® Machine resources -- CPU, DISK

L] Criticality — in the event of a crisis, what becomes most

important

One can now propose a multi-run plan which is a compromise based upon:

L Machine capability/availability

-15-

In



o Competing engineering groups (everybody cannot have their SEID

in the Residual - impacts efficiency of sensitivity studies)

® NASTRAN Superelement rules:

(a) SETREE

(b) Operations (SEMG, SEMA, SELG, SELA, SEDR)

(e) Data base store/fetch

The plan itself specifies for each computer run the interrelationship between:

L SE operations (SEMG, SEMA, SELG, SELA, SEDR)

® SEID

L Read data base, disk file, magnetic tape VSN

® Write data base, disk file, magnetic tape VSN

L Data recovery requirements of each individual team/user.

This information is entered on a form (spreadsheet) similar to TABLE 4-1,

Each DBij must fit on a single logical disk device. Further, it is easier for the computer

operator to manage the disk if the DBij are no larger than one-half of a logical device.

This is achieved by creating several DBij for each DBSET and is discussed in Appendix E.

-16 -



9
ANV ¥@3s S
VES
v dviNg o
1 v1'973s
INASY | VIN ‘DIN3S €
v v1'913s
“TDINAS | VIN ‘DIN3S 4
VIN3S
SdlL. ON3S L
TV | dVINSS | | 0
Qi3S | NOILV¥3dO| 3INVN | d3lLs
g0r | €0r
peay =
lgq peay M = M
13S€Q -lvd
SYO.L3S *13a0N
NSA

L'y 3T78VL



This spreadsheet describes the interrelationship between job step, data base file, and

data base set per DBMGR rules. The spreadsheet is vital in each of the following

phases:

Planning -

Data preparation-—-

 Execution --

Error analysis --

Historical log -

Model change --

serves as a document for communication

to the team

serves as the coding form for keying in

JCL, CASE and EXEC control decks

charts progress

traces data base errors

the attitude is emphasized, "if there is a
serious problem, the plan failed, not
NASTRAN," therefore, the effort needs to

be planned carefully

depicts what can be salvaged, what must be

rerun

-18 -



5.0 SUMMARY

Superelements are a powerful technique for analyzing large models by automated

substrueturing.

Planning their use is not automated, but can be rendered routine through thorough
organization and some experience. Visibility of the plan and the ensuing bookkeeping
that is required, is accomplished by means of the Superelement spreadsheet. Multiple
boundary conditions can be rendered routine by the automated procedures deseribed.
Long time disk requirements can be reduced up to 80% by redirecting large infrequently

used data blocks (GOAT, KOO, LOO) onto their own data base/ magnetic tape.

We encourage the MacNeal-Schwendler Corporation to:

® Incorporate provisions for fedirecting GOAT, KOO, and LOO (plus

a few other data blocks)

® Support multiple boundary conditions as a simple extension of

automated substructuring

I gratefully acknowledge the following persons who contributed to the content or editing
of this paper: Wayne Dimming (FORTRAN to generate DMI), Jefty Geller (use of
techniques in a production environment), David Atler (Cyber Control Language
procedures), John Nylander, Andy Mera, and Ervin Herness for editorial assistance. Also
Mike Gockel, Carl Hennrich, Dean Bellanger and Jerry Joseph for Superelement training
and consultation. Special thanks to Bill Mayer, Dennis Bjornson, and Ken Coke for their

support in obtaining permission to publish this paper.

-19-




6.0

GLOSSARY

SUPERELEMENT (SEID)
SETREE

SEPLAN

SPREADSHEET

DATA BLOCK
DATA BASE (DBij)
DATA BASE SET (DBSET)

SPECIFIC DATA BLOCKS
GOAT
KOO
LOO
UGVvS
PG
QGS
KSS, PSS, POS

MODULE
DECOMP, FBS, MPYAD
55G3
SDR1
SEMG, SEMA

SELG, SELA
SEDR

substructure of entire model

specifies the upstream/downstream SEID
connections

multirun overview: which SEID, operations
are executed in each computer run.

multirun detail: interrelationship between SE
operation and data bases

matrix or table
collection of data blocks

set of DBij

partitions of stiffness matrix
partitions of stiffness matrix
partitions of stiffness matrix
displacements

loads

constraint forces

constraint dependent stiffness, loads

modules perform matrix operations
upstream branch processing

upstream branch processing

SE Operations: SE matrix generation,
assembly

SE Operations: SE load generation, assembly
Data Recovery

=20 -



APPENDICES




APPENDIX A

How does MSC/NASTRAN do data recovery?

The answer can be found by studying SOL 61 DMAP operations SEP4 thru SDR2. This is
less than 100 statements out of 900..

a. Module SEDR searches the data base for UGVS and QGS, and sets
parameter NOSDR1 to .TRUE. if both are found. Note that if the
S-set is null then QGS is not stored. NOSDR1 is used later to

decide if modules SSG3 and SDR1 are to be executed to calculate
UGYVS and QGS.

b. Initial data recovery

NOSDR1 is .FALSE. and SSG3 and SDR1 are executed to calculate
UGVS from the boundary displacement (ULV or ULVS), constraint
forces (PSS, POS) and matrices KOO, LOO, GOAT.

c¢.  Additional data recovery

NOSDRI1 is .TRUE. and we go directly to data recovery in SDR2
using whatever UGVS, QGS have been found on data base.

d. Conclusion
Results can NOT be combined at the ULV level since the modules
that follow use constraint related data blocks (PSS, POS) which are
(in general) different for different boundary conditions.
Results can be combined at the UGVS, QGS level. However,
subsequent execution of SSG3, SDR1 must be prevented as both a
safety measure and if the S-set is null.
KOO, LOO, GOAT are not required after an initial SEDR.

e.  Warning

If SSG3/SDR1 are inadvertently executed and KOO is NOT
available, null UGVS will result.

-21-




APPENDIX B

By default, NASTRAN partitions data blocks into:

a. DBSET 1 - internal data
b. DBSET 2 - external or boundary data

We focus on DBSET 1. It contains two types of data:

a. KOO, LOO, and GOAT - are only required for added load cases or
initial data recovery.
b. EST, ECT,...... - are required for data recovery.

Inspection of the data base dictionary shows that just a few datablocks (KOO, L.OO, and
GOAT) use most of the space (see Table 3-1). A study of the Superelement solution
sequence (DMAP, Appendix C) shows that KOO, LOO, and GOAT are only required for:

a. SEMA - generates KOO, LOO, and GOAT

b. SELA

c. Initial SEDR (SSG1, SDR1)

d. Restart to change model (multiple SEID on same data base)

Situations in which several data recovery restarts are required over an extended period
of time suggest redirecting GOAT, KOO, and LOO to their own data base. This
infrequently used data base can then be put on magnetic tape (or discarded) reducing
expensive long-time permanent disk costs by some 80%. This also facilitates many disk-
based customized data recovery jobs in which the speed of data base access is apparent,
especially for interactive post processing.

Options for adding load cases are:

a. Use PARAM, SOLID
b. Uncouple load runs on separate data bases

It is felt that uncoupling sets of loads on separate data bases is more fail safe,
especially if combining load cases via DMAP. Relevant data blocks are GEOM3S, PGqG,
PJ, QGS, UGVS, and ETT and of less interest POS, PSS, PL, PA, and SLT. These are all
relatively small and can be left on permanent disk. However, only PJ, PG, QGS, UGYVS,
and ETT are required for data recovery.

-22-



APPENDIX C

NASTRAN SUPERELEMENT SOLUTION SEQUENCE QUESTION:

What modules and data blocks are required for:
added load case?
change of boundary conditions?
data recovery?

MODULE FUNCTION
PREFACE sorts bulk data
SEP1 generate S. E. map
SEP3 determines which SEID operation to
process
~SEP2 partition GEOMi into GEOMiS for
each SEID in SLIST
GP1 grid point tables
GP2 element connectivity
SEMG— GP3 static loads
TA1l element summary (properties)
EMG Element matrix generation
-EMA Element matrix assembly
SELG SSG1 generate loads
F—SEMA assemble matrices KJJ + sum of KAA
GP4 displacement sets, rigid element,

enforced displacement

SEMA-; UPARTN partition constraints sets
DECOMP decompose KOO
FBS forwards backwards substitution
—MPYAD | form KAA from GOAT

-23.-

DATA BLOCKS
GEOM;
-SEMAP

-SLIST

-ECT

-EST
‘KEI,:M

-KGG
-PJ

-KGG

-USET,RG,YS

-KOO
-LOO
~-GOAT

-KAA



MODULE

ELA
SELA— SSG2
SSG3
~SEP4
SEDR

COND

SEDR SSG3}W
SDR1

LABEL

~SDR2

amimas

CONCLUSIONS:

a. Initial SEDR computes internal displacements (UGVS) from the boundary values

APPENDIX C (continued)
FUNCTION

assemble load PJ + sum of PA
use KFS, KSS to partition loads

Use LLL, KLL, PL to find
residual displacement

fetech UGVS, QGS
fetch ULV, set parameter NOSDR1

ABC, NOSDR1 $ Jump to ABC if
NOSDR1.LT.0

use LOO, KOO, POS to find UOOVS

use UOOVS, ULVS to compute internal
displacement

ABC

process specific data recovery request
per case control

"nitial" Data Recovery

(ULVS), and uses SPC related data.

DATA BLOCKS

-PG
-POS, PSS

-ULV

-QGS,UGVS

b. Subsequent SEDR skips over SSG3, SDR1 and does not require GOAT, KOO,

LOO.

e. Results ean be combined at the UGVS, QGS level for each Superelement, but
not at any ULV level that involves changed constraints.

-24-



APPENDIXD
COMBINING SUBCASES BY DMAP



APPENDIX D1

COMBINING LOADS

Vu = Vs FACTs + V, FACT,

Configuration 1 (Subcases 9 +-10 = § + A)

DMI, SFACT1, 2, 1, 1, 20
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1

e

-

-
-

-
-

-

-
-

O\UI-h.kUNd—h

-
-

-
-

LY
-

b
CWEN
WOEN

L)
-

DMI, AFACT1, 1, 20, 20

-
-

owLo
oON

1,
+1
-1

=3
-
- b

-25.-




APPENDIX D1 (continued)

COMBINING LOADS

Vu = Vs FACTs + V, FACT,

Configuration 2 (Subcases 11 +12, 14 115,18 +19 = S T A)

. DMI,SFACT2, O, 1, 2, 1, 1, 20
11, 11, +1
12, 12, +1
13, 13, +1
14, 14, +1
15, 15, +1
16, 16, +1
17, 17, +1
18, 18, +1
19, 19, +1
20, 19, +1

DMI,AFACT2, O, 2, 1
11, 11, +1
12, 12, -1
14, 14, +1
15, 15, -1
18, 19, +1
19, 19, -1

-26-



APPENDIX D2
COMBINE RESULTS, TWO BOUNDARY CONDITIONS

$... DM7V62B ...
$.... ONE CONFIGURATION ...

DBMGR //0/-1/2000////DB05/ $ GIVES 56,000 SEKTORS
$

DBMGR //2/0/0/15/1 $ ALPHABET.

MATPRN SFACTD,AFACTD/ $ PRINT DMI

$..
DBMGR //10/0/0/-5///SDR1DONE $ INITIAL DATA RECOV. DONE
$...
DBFETCH /SEMAP,CCASECC,,,/0/0/1/-16 $

TABPT CCASECC// $

SEP3 CCASECC,SEMAP/SLIST/S,N,NP/S,N,XSEID § XSEID=-1
TABPT SLIST/ $

PARAM //ADD/V,N,SCONT/-5/XSEID $ SCONT = -6
PARAML SLIST//TRAILER/1/V,N,NSEID$  NO. SEID

$ JUMP ENDSGL $
B et $
$

LABEL TOPSGL $ AAAAAAAAAAAAAAAAAAAAAAAAA

$

PARAM //ADD/V,N,SCOUNT/+7/SCONT$ GRAB WORDS 1,8, 15,22,..
PARAML SLIST/DTI/1/V,N,SCOUNT//V,N,SEID $SEID = SLIST(SCONT)
PARAM //ADD/V,N,LPFLG/-1/SEID $ LPFLG = SEID - 1

DBFETCH /SUGVS,SPG,SPJ,SPJ1,SQGS/0/SEID/1/-2 $ SYMM.CODE =S
DBFETCH /AUGVS,APG,APJ,APJ1,AQGS/0/SEID/1/-4 $ ASYM.CODE=A
$ . |
MPYAD SUGVS,SFACT/SCOMP $ UGVS
MPYAD AUGVS,AFACT /ACOMP $ UGVS
ADD SCOMP,ACOMP/UGVS/$

$ .

MPYAD SPG,SFACT,/SPG$ PG
MPYAD APG,AFACT/APGS$ PG
ADD SPG,APG/PG/ $

$ .
MPYAD SPJ,SFACT/SPJ § PJ
MPYAD APJ AFACT/APJS$ PJ
ADDSPJ,APJ/PJ/ $

$ .
MPYAD SPJ1,SFACT,/SPJ1$ PJ1
MPYAD APJ1,AFACT/APJ1$ PJ1

-27-




ADD SPJ1,APJ1/PJ1/ $

$ .

PARAML QGS/PRES//V,N,NULLBLOK $ NULLBLOK =-1 IF PURGED
COND NULLQGS,NULLBLOK $

MPYAD SQGS,SFACT,/SQGS $ QGS

MPYAD AQGS,AFACT,/AQGS$ QGS

ADD SQGS,AQGS/QGS/ $

JUMP ENDQGS $

LABEL NULLQGS $

DBMGR //10/0/SEID/-5//QGSFLAG $ S-SET IS NULL
LABEL ENDQGS $

DBSTORE UGVS,PG,PJ,PJ1,QGS/0/SEID/-5 $

COND ENDSGL,LPFLG $
REPT TOPSGL,1000 $§
LABEL ENDSGL §
END$

228 -



APPENDIX D3
COMBINE RESULTS, TWO BOUNDARY CONDITIONS, TWO CONFIGURATIONS

DBMGR //0/-1/2000////DB05/ $ GIVES 56,000 SEKTORS
$

DBMGR /72/0/0/15/1 $ ALPHABET.

MATPRN SFACTD,AFACTD// $ PRINT DMI

$
$...
DBMGR //10/0/0/-5///SDR1DONE $ INITIAL DATA RECOV. DONE
$...
DBFETCH /SEMAP,CCASECC,,,/0/0/1/-16 $

TABPT CCASECC// $

SEP3 CCASECC,SEMAP/SLIST/S,N,NP/S,N,XSEID $§ XSEID=-1
TABPT SLIST// $

PARAM //ADD/V,N,SCOUNT/-5/XSEID $ SCOUNT = -6
PARAML SLIST//TRAILER/1/V,N.NSEID$ NO. SEID

$

$ JUMP ENDSGL $

S e $

$

LABEL TOPSGL $§ AAAAAAAAAAAAAAAAAAAAAAAAA
$

PARAM//ADD/V,N,SCOUNT/+7/SCOUNT$ GRAB WORDS 1,8,15,22,..
PARAML SLIST/DTI/1/V,N,SCOUNT//V,N,SEID $SEID = SLIST(SCOUNT)
PARAM //ADD/V ,N,LPFLG/-1/SEID $ LPFLG = SEID-1

DBFETCH /SUGVS,SPG,SPJ,SPJ1,SQGS/0/SEID/1/-2 $ SYMM =UP.CODE=S
DBFETCH /AUGVS,APG,APJ,APJ1,AQGS/0/SEID/1/-4 $ ASYM=UP.CODE=A
DBFETCH /XUGVS,XPG,XPJ,XPJ1,XQGS/0/SEID/1/-12$ SYMM =DN.CODE=X
DBFETCH /YUGVS,YPG,YPJ,YPJ1,YQGS/0/SEID/1/-14 $ ASYM=DN.CODE=Y
$ .
MPYAD SUGVS,SFACTU /SCOMPU $ UGVS

MPYAD AUGVS,AFACTU/ACOMPU $ UGVS

MPYAD XUGVS,SFACTD,/SCOMPD $ UGVS

MPYAD YUGVS,AFACTD/ACOMPD $ UGVS .
ADDS5 SCOMPU,ACOMPU,SCOMPD,ACOMPD /UGVS $
$ .
MPYAD SPG,SFACTU/SPGU $ PG
MPYAD APG,AFACTU/APGU $ PG
MPYAD XPG,SFACTD,/SPGD $ PG
MPYAD YPG,AFACTD,/APGD$ PG
ADDS5 SPGU,APGU,SPGD,APGD,/PG $

-29.




$ .

MPYAD SPJ,SFACTU,/SPJU § PJ
MPYAD APJ,AFACTU/APJUS$ PJ
MPYAD XPJ,SFACTD,/SPJD$ PJ
MPYAD YPJ,AFACTD/APJD $ PJ
ADD5 SPJU,APJU,SPJD,APJD,/PJ $

$ .

MPYAD SPJ1,SFACTU/SPJ1U § PJ1

MPYAD APJ1,AFACTU/APJ1U § PJ1

MPYAD XPJ1,SFACTD/SPJ1D$§ PJ1

MPYAD YPJ1,AFACTD,/APJ1D$ PJ1

ADD5 SPJ1U,APJ1U,SPJ1D,APJ1D,/PJ1 $§

$ .

PARAML QGS//PRES////V,N,NULLBLOK $ NULLBLOK =-1IF PURGED
COND NULLQGS,NULLBLOK $

MPYAD SQGS,SFACTU,/SQGSU $ QGS

MPYAD AQGS,AFACTU,/AQGSU $ QGS

MPYAD XQGS,SFACTD,/SQGSD $ QGS

MPYAD YQGS,AFACTD,/AQGSD $ QGS

ADD5 SQGSU,AQGSU,SQGSD,AQGSD,/QGS $

JUMP ENDQGS $

LABEL NULLQGS $

DBMGR //10/0/SEID/-5///QGSFLAG $ S-SET IS NULL

LABEL ENDQGS $

$

DBSTORE UGVS,PG,PJ,PJ1,QGS//0/SEID/-5 $

B e

$ ... DBFETCH /GBGPDTS,GEQEXINS,GCSTMS,GUSET /0/SEID/1/-16 $
$ ... DBFETCH /GSILS,GGPLS,, /0/SEID/1/-16 §

$ ... MATGPR GGPLS,GUSET,GSILS,UGVS/H/G $ PRINT UGVS

$ ... VECPLOT PG,GBGPDTS,GEQEXINS,GCSTMS,,/QAG/V,Y, GRDPNT/0/+ 1/PGLOAD $
$

COND ENDSGL,LPFLG $
REPT TOPSGL,1000 $
LABELENDSGL $

$

DBMGR //2/0/0/-5/0 $

$
END$

-30-



APPENDIX D4
FORTRAN GENERATED DMI/SUBCASE

PROGRAM CASECDS(INPUT,TAPE1, TAPE2,0UTPUT, TAPE3 =INPUT,TAPE4=0UTPUT,
1TAPES,TAPE6,TAPE7 TAPES8, TAPE9, TAPE10)

PROGRAM - CASECDS
DATE - 21JUNE84
BY - DIMMIG
PURPOSE - CREATE CASE CONTROL AND DMI CARDS FOR NASTRAN
BASED ON USER SUPPLIED LOAD DATA
= => SEE CASPROC FOR FILES USED

UPDATE - 21JUNE84
BY - GELLER

- CORRECTED DMI GENERATION SECTION AND USYM
FILE OUTPUT.

UPDATED - 2/20/85
BY DIMMIG
- MODIFIED TO CREATE RECTANGULAR DMI'S TO GET RID OF DUMMY
CASES REDUCING CRUNCH TIME & SPACE ON FBS

MODIFIED BY DIMMIG TO ALLOW DIFFERENT MODEL TITLES

sleloNoNoNoXoXoNoloNoNoNoNeNoNoNoRoRoXoNoNoNoNoNo X o]

DIMENSION SID1(999),SID2(999), LABEIL(999,4), DUMLAB(4),GRIDS(100)
INTEGER SID1,SID2, PLABEL,SLABEL ALABEL,DUMMY,DUMLAB,ALPHA FACTOR,F
1LAG,GRIDS,SID,FLAG1,TIT
DATA DUMMY/99999/
DATA DUMLAB/SHDUMMY CA,8HSE 8H ,8H /
DATA NOLABEL,PLABEL,SLABEL, ALABEL/10H , JOHPURE SYM. ,10HS
1YM. COMP ,10HASYM. COMP/
DATA SID1,SID2/999%0,999*0/
NGRIDS=0
FLAG1=0
WRITE(4,1011)
1011 FORMAT(/* INPUT A MODEL TITLE (UP TO 8 CHARACTERS).*)
READ(3,1012) TIT
1012 FORMAT(AS)
IF(EOF(3)) 200,210
200 CONTINUE
TIT=8HGARBAGE
210 CONTINUE
5 CONTINUE

-31-




NGRIDS=NGRIDS +1
READ(1,*) GRIDS(NGRIDS)
IF(EOF(1)) 25,5
25 CONTINUE
NGRIDS = NGRIDS-1
NCASE=0
10 CONTINUE
NCASE =NCASE+1
READ(2,1006) SID1(NCASE),SID2(NCASE),(LABEL(NCASE,J),J =1,4)
1006 FORMAT(218,5X,4A8)
IF(EOF(2)) 20,15
15 CONTINUE
SID =SID1(NCASE)
130 CONTINUE
IF(FLAG1.EQ.1) GO TO 120
[F(NGRIDS.EQ.0) FLAG1=1
IF(NGRIDS.EQ.0) WRITE(4,1008)
1008 FORMAT(* NO GRIDS INPUT ON FILE 'GRIDS'*/* THEREFORE NO 'FORCE('
1FILE CREATED!*)
IF(NGRIDS.EQ.0) GO TO 120
DO 110I=1,NGRIDS
WRITE(10,1007) SID,GRIDS(I)
1007 FORMAT(*FORCE *2I8* 0. 1. 0. 0.%)
110 CONTINUE
IF(SID2(NCASE).EQ.0) GO TO 120
IF(SID.EQ.SID2(NCASE)) GO TO 120
SID=SID2(NCASE)
GO TO 130
120 CONTINUE
NTOTAL=NTOTAL+1
IF(SID2(NCASE).NE.0) NTOTAL=NTOTAL +1
GOTO10
20 CONTINUE
NCASE = NCASE-1
WRITE(4,1002) NCASE
1002 FORMAT(* NUMBER OF CASES READ IN = *,I3)
C
C WRITE OUT THE PURELY SYMMETRIC LOAD CASES
C
=0
NSYM=0
DO 401=1,NCASE
IF(SID2(I).NE.0) GO TO 40
H=IH+1
NSYM=NSYM+1
WRITE(5,1000) SID1(I),SID1(I),TIT,SID1(I)(LABEL(I,J),J = 1,4),PLABE
1L,11
1000 FORMAT(*$*/*SUBCASE *,18/* LOAD = *,I8/* LABEL = * A8,* * [8,*
1.* 4A8,*$ * A10/*$ SUPER= 100,* I3/*$* 40(*-*))
1009 FORMAT(*$*/*SUBCASE *,I8/* LOAD = *I8/* LABEL = * A8**[8*
1 +*,18,* % 4A8,*$ * A10/*$ SUPER= 100,* I3/*$*,40(*-*))
1010 FORMAT(*$*/*SUBCASE *,I8/* LOAD = *18/* LABEL = * A8**]8*
1-*18,* * 4A8 *$ * A10/*$ SUPER= 100,*,I3/*$* 40(*-*))
40 CONTINUE

-32-



WRITE(4,1001) NSYM
1001 FORMAT(/* NUMBER OF PURELY SYMMETRIC CASES OUTPUT = * 13)
C
C WRITE OUT THE ASYMMETRIC COMPONENT CASES WITHOUT DUMMY SYMMETRIC
C COMPONENTS
C
II=0
NASYM = 0
DO 50 1=1,NCASE
H=II+1
C WRITE(6,1000) SID1(), DUMMY,TIT,DUMMY,(DUMLAB(),J = 1,4), NOLABEL,II
IF(SID2(1).EQ.0) GO TO 50
M=I+1
NASYM = NASYM + 1
WRITE(6,1000) SID2(I),SID2(I), TIT,SID2(1) (LABEL(LJ),J = 1,4), ALABE
1L,I1
50 CONTINUE
WRITE(4,1003) NASYM
1003 FORMAT(/* NUMBER OF ASYMMETRIC COMPONENTS = *,13)
C
C WRITE OUT THE PURE SYMMETRIC CASES, THE SYMMETRIC COMPONENTS AND
C NODUMMY ASYMMETRIC CASES
C
II=0
DO 601=1,NCASE
M=H+1
IF(SID2(I).EQ.0) WRITE(7,1000) SID1(I),SID1(I),TIT,SID1(I),(LABEL(
11,J),J =1,4),PLABEL,II
IF(SID2(I).NE.0) WRITE(7,1000) SID1(I),SID1(I), TIT,SID1(I),(LABEI(
11,0),J =1,4),SLABEL,II
IF(SID2(1).EQ.0) GO TO 60
C II=I+1
C WRITE(7,1000) SID2(I),DUMMY, TIT,DUMMY (DUMLAB(J),J =1,4), NOLABEL,II
60 CONTINUE
C
C WRITE OUT ALL THE CASES
C 1)PURE SYMMETRIC
C 2) SYMMETRIC COMPONENTS
C 3) ASYMMETRIC COMPONENTS
C
n=0
DO 701=1,NCASE
N=I1+1
IF(SID2(I).EQ.0) WRITE(8,1000) SID1(1),SID1(I),TIT,SID1(I),(LABEL(
11,),J =1,4),PLABEL,II
IF(SID2(I).NE.0) WRITE(8,1009) SID1(I),SID1(D), TIT,SID1(1),SID2(])
1,(LABEL(1,J),d =1,4),SLABEL,II
IF(SID2(1).EQ.0) GO TO 70
M=I+1
WRITE(8,1010) SID2(I),SID2(I), TIT,SID1(1),SID2(I),(LABEL(I, D) J = 1,
14), ALABEL,II
70 CONTINUE
C
C WRITE OUT THE DMI FILE

-33-




NSYM=NSYM+NASYM
ALPHA=1HS
WRITE(9,1004) ALPHA NSYM,NTOTAL
ALPHA=1HA
WRITE(9,1004) ALPHA ,NASYM,NTOTAL
1004 FORMAT(*DMI,*,A1,*FACT,0,2,1,1,,*,13,* *,I3)
WRITE(9,1104) NTOTAL
1104 FORMAT(*$*/*$ ULV DMI FOR TOTAL # OF LOADCASES*/*$*/*DMI,ULV,0,2,1,
1,1,,1,% 13/%$%)
LC=0
LCSYM =0
LCASYM =0
DO 80I=1NCASE
WRITE(9,1101)SID1(I),SID2(I)
LCSYM = LCSYM + 1
LC=LC+1
ALPHA = 1HS
FACTOR = 4H+1.0
WRITE(9,1005) ALPHA,LC,LCSYM,FACTOR
IF(SID2(1).EQ.0)GO TO 80 ’
LCASYM=LCASYM +1
ALPHA=1HA
WRITE(9,1005) ALPHA,LC,LCASYM,FACTOR
LC=LC+1
ALPHA=1HS
WRITE(9,1005) ALPHA,LC,LCSYM,FACTOR
FACTOR=4H-1.0
ALPHA=1HA
WRITE(9,1005) ALPHA,LC,LCASYM,FACTOR
80 CONTINUE
1005 FORMAT(*DMI,* A1,*FACT,* I8 * * [8.* * A4)
1101 FORMAT(*$*/,*$ SYM SID = *16,3X,*ASYM SID = *16,/*§*)

C
END$
INPUT
1000 SYMMETRIC GUST
1002 SYMMETRIC GUST

1200 1201 ROLL MANEUVER
1212 1213 ROLL MANEUVER

DMI-OUTPUT

DMI,SFACT,0,2,1,1, 4,
DMI,AFACT,0,2,1,1, 2,
$

6
6

-34-




SYM SID -

MI,SFACT,

e

$ SYMSID-
$

DMI,SFACT,
$
$
$
DMI,SFACT,
DMI,SFACT,
DMI,AFACT,
'DMI,AFACT,
$

$

$ SYMSID-
$

DMI,SFACT,
DMI,SFACT,
DMI,AFACT,
DMI,AFACT,

SYMSID- 1200

B O W

1212

[« % W~ P

$
SUBCASE 1000
LOAD = 1000

LABEL = EXAMPLE .

$ PURE SYM.
$ SUPER =100, 1
$ .o

$
SUBCASE 1002
LOAD = 1002

LABEL=EXAMPLE .

$ PURE SYM.
$ SUPER =100, 2
$ -

$
SUBCASE 1200
LOAD = 1200

LABEL=EXAMPLE .

$
ASYM. COMP
$ SUPER =100, 3
$ . ...
$
SUBCASE 1201

ASYMSID =

1,+1.0

ASYMSID =

2,+1.0

3,+1.0
4,+1.0
4,+1.0
4,- 1.0

5,+1.0
6,+1.0
6,+1.0
6,- 1.0

1200 +

0

ASYM SID = 1201

ASYM SID = 1213

SUBCASE - OUTPUT

1000.

1002.

1201.

-35-



LOAD = 1201
LABEL = EXAMPLE
$
ASYM. COMP
$ SUPER =100, 4

$
$
SUBCASE 1212
$
ASYM. COMP
$ . . .
$
SUBCASE 1213
LABEL=EXAMPLE
$
ASYM. COMP

$ SUPER =100, 6

1200 -

1212 +

1212 -

1201.

1213.

1213.

-36 -



APPENDIX D5
DBSET 5 - LOADS, DISPLACEMENT

...............................................

NASTRAN ALTER VER 62B SOL 61
PUT LOADS AND DISP. ON DBSET = 5
CHECK FOR: QGSFLAG = NULL S-SET

SDR1DONE = ULV NOT PRESENT .

PRPRLPPBLAARANRPALHNARANRLYH

ALTER 43,43 $

DBSTORE GEOMS3//V,Y,SOLID/0/5/NP $
ALTER 45,45 §

DBSTORE EDT//SOLID/0/5/NP $
ALTER 47,47 $

DBSTORE DIT//SOLID/0/5/NP $
ALTER 197,197 $

DBSTORE GEOM3S//V,Y,SOLID=0/SEID/5 $
ALTER 253,253 $

DBSTORE ETT,SLT//SOLID/SEID/5 $
ALTER 330,330 $

DBSTORE PJ,PTELEM//SOLID/SEID/5 $
SXXXXXXXXXXXXXXXXXXXXXX USET
ALTER 351,351 §

DBSTORE USET/MODEL/SEID/1 $

DBSTORE USET/MODEL/SEID/2 $
SXXXXXXXXXXXXXXXXXXXXXX USET
ALTER 352,352 $

DBSTORE YS//SOLID/SEID/5 $
ALTER 530,530 $

DBSTORE PG//SOLID/SEID/5 $
ALTER 538,539 $

DBSTORE PSS,QR,POS,PL//SOLID/SEID/5 $

DBSTORE PA//SOLID/SEID/5 $
ALTER 550,550 $

DBSTORE ULV//SOLID/SEID/5 $
ALTER 657,657 $

DBSTORE UGVS,QGS//SOLID/SEID/5 $
ALTER 95,95 $

DBFETCH /EDT,GEOMS3,,DIT,MATPOOL/SOLID/0//5 $
ALTER 315,315 $

DBFETCH /ETT,SLT,, /SOLID/SEID//5 $
ALTER 520,520 $

-37-



DBFETCH /PJ,,, /SOLID/SEID/5 $
ALTER 560,560 $

DBFETCH /OLB,,,/SOLID/PEID/1/5 $
ALTER 590,590 $

DBFETCH /ULV,OLB,DIT,EDT /SOLID/0/5 $
ALTER 599,599 $

DBFETCH /SLT,,,/SOLID/0//5 $
ALTER 630,630 $

DBFETCH /PSS,PJ,POS,YS,QR/SOLID/SEID/5 $
ALTER 634,634 $

DBFETCH /PJ,,,/SOLID/SEID//5 $
ALTER 659,659 $

DBFETCH /UGVS,QGS,PJ1,0LB1/SOLID/SEID/5 $
ALTER 664,664 $

DBFETCH /GEOMS3S,ETT,,/SOLID/SEID//5 $
ALTER 687,687 $

DBFETCH /KSLT FQGE,FDLT, /SOLID/0/1/5 $
ALTER 770,770 $

DBFETCH /PG,,,/SOLID/SEID/5 $
ALTER 331,331 %

DBMGR //10/SOLID/SEID/5///SELGDONE $
ALTER 543,543 $

DBMGR //10/SOLID/SEID/5///SELRDONE $
ALTER 546,546 $

DBMGR //10/SOLID/SEID/5///SELRNG $
ALTER 527,527 $

SELA PJ SLIST,EMAP,EQEXINS/PG/PA/MAPS/SOLID/0/S,N,NP/SEID/5 $
ALTER 587,587 $

SEP4 CASECC,PCDB,EMAP,XYCDB/DRLIST/APP/UGVS/SOLID/5/S,N,NP/

S,N SEID/S,N,NOLOAD/PUGV/QGS $

$ ONLY NEED FOR SEUPPLOT

$ )

ALTER 218,218 $ STORE EQEXINX,ECTX,BGPDTX SILX .
ALTER 229 229 $ FETCH EQEXINX,ECTX,BGPDTX, SILX .
ALTER 798 798 $ FETCH EQEXINX, ECTX, BGPDTX, SILX .

BUG - FIX IF S-SET NULL -

IFS-SET NOT NULL, QGSFLAG =0 -
IFS-SET ISNULL, QGSFLAG =-1 -

RPPRAPP RN

$ OTHERWISE: QGSISNULL, -

$ SSG3 SDR1 ARE RE------ DONE, -

$ UGVSISNULL UNLESS KOO IS AVAIL. -
$

ALTER 657 $ AFTER DBSTORE QGS -

DBMGR //11/SOLID/SEID/0/S,N,QGSFLAG/QGS $ -
COND NOQGS,QGSFLAG $ -

-38-



JUMP YESQGS ¢ -
LABEL NOQGS $
DBMGR /71 0/SOLID/SEID/5///QGSNULL $ -

LABEL YESQGS $ -
$ -
$-mmm e SKIP SSG3,SDR1 IF QGSNULL FOUND -
$-ommemeeee SKIP SSG3,SDR1 IF SDR1DONE FOUND -
$ -
ALTER 649 § BEFORE SSG3 -

DBMGR //11/SOLID/SEID/0/S,N,QGSFLAG//QGSNULL $ -
COND LNOSDR1,QGSFLAG $

DBMGR //11/SOLID/SEID/0/S,N SDRIFLAG//SDRI DONE $ -
COND LNOSDR1,SDR1FLAG $ -

R LR R

-39-




APPENDIX D6
DBSET 6 - KOO, LOO, GOAT

$ NASTRAN ALTER VER 62B SOL 61

$

$ PUT GOAT=GO,KO0,LOO ON DBSET =6 NEED FOR LOADS, INITIAL SEDR
$ PUT KGG(GPSP1) ON DBSET=6 NEED FOR LOADS, INITIAL SEDR

ALTER 139,139 $ K'TT
ALTER 145,145 $
DBSTORE GO/MODEL/SEID/6 $
ALTER 151,151 $ GO=GOAT
DBMGR //9/MODEL/SEID/MODEL/SEID/6/GO/GOAT $
ALTER 155,155 $
DBSTORE GOAT/MODEL/SEID/6 $
ALTER 160,160 $ GOQ=GO0AQ
DBMGR //9/SOLID/SEID/SOLID/SEID/6/GOQ/GOAQ $
ALTER 164,164 $
DBSTORE GOAQ/MODEL/SEID/6 $
ALTER 343,343 $ DBSTORE KGG NEED FOR GPSP1(LOADS)
DBSTORE KGG/MODEL/SEID/6 $
ALTER 374,374 %
DBSTORE GM/MODEL/SEID/6 $
ALTER 381,381 $
DBSTORE KFS,KSS,KSF/MODEL/SEID/6 $
ALTER 390,390 $
DBSTORE KOO,KVV/MODEL/SEID/6 $
ALTER 413,413 $
DBSTORE LOO,UOO/MODEL/SEID/6 $
ALTER 441,441 $
DBSTORE GOAT/MODEL/SEID/6 $
ALTER 466,466 $
DBSTORE KLL/MODEL/SEID/6 $
ALTER 472,472 $
DBSTORE LLL,ULL/MODEL/SEID/6 $
ALTER 499,499 $
DBSTORE DM/MODEL/PEID/6 $

ALTER 114,114 %

DBFETCH /BUSET,,, /MODEL/PEID/1/1 $
ALTER 140,140 $

DBFETCH /GOAT,, /MODEL/SEID/6 $
ALTER 148,148 $

DBFETCH /GO,,, /MODEL/SEID/6 $
ALTER 157,157 $

DBFETCH /GOQ,,,/SOLID/SEID/6 $

-40 -



ALTER 349,349$% DBFETCH KGG NEED FOR GPSP1(LOADS)
DBFETCH /KGG,,,/MODEL/SEID//6 $
ALTER 394,394 §
DBFETCH /GO,,,/MODEL/SEID//6 $
ALTER 411,411 8§
DBFETCH /K0O,,,/MODEL/SEID//6 $
ALTER 436,436 §
DBFETCH /LOO,UQO,,/MODEL/SEID//6 $
ALTER 502,502 $
DBFETCH /GM,GOAT,DM,/MODEL/PEID//6 $
DBFETCH /USET,,,/MODEL/PEID//1 $
ALTER 519,519 §
DBFETCH /K0OO,LOO,KLL,LLL KFS/MODEL/PEID//6 $
ALTER 625,625 §
DBFETCH /GM,KFS,KSS,GOAT,/MODEL/V,N,PEID//6 $
DBFETCH /USET,,,/MODEL/PEID//1 $
ALTER 651,651 §
DBFETCH /K00,L00,,/MODEL/PEID//6 $

ALTER 440,440 $
DBMGR //5/MODEL/SEID/0/6//GO $

-4 -




The maximum size of the DBij must be estimated as part of the planning and alloecation
of an adequate number of DBij on each DBSET and so entered in the spreadsheet. .

a.

b‘
c.

APPENDIX E
MAXIMUM SIZE OF A DBij

Planning - SE Spreadsheet

Choose SETREE and run SEMAP to validate tree and obtain time
and space estimates.

Select which SEID are to be run in each job step.

For each job step:

Estimate size of data base for each DBSET to enable choosmg the
51ze of each DBij. Considerations are:

1.
2.

3.

5.

Each DBij must fit on one logical disk device.

Size should be just under integer multiple of that which will
fit on one tape.

Rules of thumb for CYBER (60 bit per word) are:

(a) 1792 NASTRAN words per block (Buffsize)

(b) 64 word per sector

(c) 28 sectors per block (28 x 64 = 1792)
64 million words per physical disk (CYBER 885). In
general, allow 100 words per grid for models with less
then 10,000 grids.

Resolve permanent storage into disk and tape in
consideration of: duration of storage, frequency of access,
and availability of disk resources. Since the data base
format is random - sequential (1), all data bases for a given
run must be available on disk for the duration of the run. If
disk space is limited, the way it is configured (scratech,
permanent) may constrain where tapes copied.

Pre-assign taped and disk device (machine dependent).

-42-



