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ABSTRACT

The variation of pressure loads due to displacement variations in non-
linear geometric analysis is developed in terms of a tangent finite element
matrii. This so-called follower force matrix is significant relative to the
normal geometric tangent matrices for many problems and improves the conver-
gence of the nonlinear solution. The effects of the follower force matrices
are also important for analyzing problems of instabilities and dynamics under
pressure, such as containers and tires where an accurate tangent matrix is re-
quired. Special finite elements are implemented in- MSC/NASTRAN to represent
the tangent stiffness of pressure loads on surfaces. Results shown for
buckling solutions and normal mode analysis, indicate dramatic improvement in

the results.

INTRODUCTION

Externally applied loads are included in the force equilibrium equations
in all finite element structural analysis codes. The nonlinear effects of
"follower forces", which change direction and magnitude with large element
motions are included as direct force updates in most nonlinear analysis
codes. However, the tangent stiffness terms generated by follower forces are
rarely included. A recent paper (Ref. 1.) shows the difficulties in defining
the general forms of the follower force matrices. The development below is an

attempt to simplify these ideas.
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The tangent stiffness effects of "follower forces" are usually ignored
for direct nonlinear static or transient response problems. The modified
Newton methods and explicit integration systems used to find solutions do not
require exact tangent matrices to obtain accurate answers. The tangent
stiffness of the finite elements themselves is usually sufficient to provide
reasonable approximations for the search algorithm. However, 1in special
problems involving shells under pressure, such as automobile tires and wind

sails, the convergence rate of the Newton methods have been very poor.

Other indirect solutions require more precise tangent properties than are
presently included in the conventional "geometric stiffness" or "differential
stiffness" matrices. Changes in tangent matrices are used in buckling
analysis to predict unstable or bifurcation points. Dynamicists frequently
use the nonlinear static (preload) solution as a reference state for modal

studies or frequency analysis where small motions are assured.

In the development described below a special set of finite element terms
are derived for the case of pressure loads for line elements, triangular
surface elements and quadrilateral surface elements. These matrices have very
interesting properties that result in symmetric, conservative systems under
certaih special conditions but remain unsymmetric for the general case. Also

included are example problems that illustrate the importance of these effects.

THEORETICAL BACKGROUND

Linear methods of Finite Element Analysis evolve naturally into geometri-
cally nonlinear forms when consistent principles and coordinate systems are
applied. Variational methods applied to virtual work equations lead to equi-

librium equations which lead to matrix solution methods.

For large geometry changes in the MSC/NASTRAN systems the so-called
"Updated Lagrangian" method is used to account for the changes in orientation
of the materials and finite elements. The stresses and strains in the moving
material coordinates produce potential elastic energy which is minimized by
the variational method. The changes in the external load vectors produce a
corresponding work term which may also be included in the variational process

to produce the generalized forces.




The virtual work principle is used to develbp the basic finite element

equations. A basic static form taken from Ref. [2] is:

8¢ = [oseav- [B.s0av- [ELesuar (1)
' \'f r
where sY is the variation of virtual work

dv is an incremental volume

dr is an incremental exterior surface

o is the stress tensor at a point

de are the variation of infinitesimal strains

g is the applied body force vector at a point

g is the applied surface force vector at a point

53 is the variation of the displacement vector at a point

The first term on the right hand side is used to develop the familiar finite
element forces and matrices. In this paper we will concentrate on the last
term, namely the work caused by external pressures. First we must convert the

integral equation to finite element matrices.

In order to develop finite element matrix terms we make the following
definitions:
63(x, Y, z) = ﬁi(x, Y, z)Gui (2)
where ﬁi is the value of the finite element shape function corresponding to a
particular grid point displacement attached to the element and Gui is the
>
variation of the grid point displacements. In the present case Ni are the

motions of a surface.

For scalar pressure loads, p, we may replace the scalar surface incre-

ment, dI', with the surface vector increment, dg, where

£ dr = -pdd (3)




Note that the vector d§ faces outward on the finite element, and will move and
rotate with large motions. However, in the case investigated the pressure

also moves with the element or "follows" the structure.

For a single finite element surface, S, the variational work due to
pressure is obtained by combining Egs. (2) and (3) with the ‘last terms of
Eq. (1), 6wp, which results in:

s = [ p ou, N, -dd ()
ii
S
The force vector is therefore:
p
o a(sv”) .,
Fi e P Ni-dS (5)
a(su) 5

However, the surface S changes shape and direction with large finite
element motions. MSC/NASTRAN accounts for these changes by calculating new Fi

vectors during the iteration cycle.

For a true "tangent matrix" we may also examine the derivatives of F?.

Taking derivatives with respect to a generalized displacement, uj, we obtain
the tangent terms, ng, due to pressure as:
oFY R
KE. -2 - — [p N, -ds (6)
J auj du S

Note that for the general case the system will be unsymmetric. For higher
order elements it is expected that both the surface and the shape functions
will change with displacements. However, for the simple linear elements the

integral may be simplified as shown in the following examples.




Pressure Follower Loads on Line Element

The simplicity of line elements in a two-dimensional space is well suited
to observe and dervive the basic principles of pressure follower loads and the
corresponding follower load stiffness matrix. In the subsequent section it

will then be developed for surface elements.

a) Basic Forces

The basic geometry for a line element is shown in Figure 1.

Ay
y PR
X
Figure 1. Line Element Geometry.
The surface vector (for a unit width) is:
> > >
S=-Ay i+ Axj )

Also note that for an increment of the isoparametric variable, g

a8 - (-ayi + Axg)dg (8)




The shape functions are:

Ny =U-et N -0 -g)j
(9)
N, = E1 Ny = &3

where £ is the dimensionless length parameter.

The forces are obtained by substituting Egs. (8) and (9) into
Eq. (3).

For example:

> > 1
Foo=JpoN_aS-p[(1-c)-ay)dc = - 5 pay (10)
S . 0
Also
= 1 Ax
ay 2 P (11)
1
Fog = = 3 PAY (12)
.1 (13)
Fby = > pAX

Note that if Ax and Ay are updated with new displacements the forces also
are updated. For tangent stiffness matrix effects we may take the

derivatives of the forces with respect to the motions.

b) Stiffness Matrix

For the stiffness matrix we must include the effect of displaéements

on the geometry, i.e.:

AX = Axr +u - u (14)
b a

(15)

Ayr + v -V

Ay b a

where Axr and Ayr are measured at the reference state ( u = 0).

-6-




From Eq. (6), the stiffness matrix terms are:

<>
o 3F 3(ds)
STIR ol R PR (16)
J S J
For example: 3F 3y
Kp = —Wgwx.= - 1p [P — 0
11 du 2° Ju
a
P Fax 1 W
12 av. ~ T 2Py T 2P
a a
ete.

The interpretation of the follower load is easily recognized as the sum

of two contributions as follows: Using element-oriented displacements the

follower force matrix for out-of-plane motion is:

Figure 2. Follcwer Force for Element Rotation.

Fr ) [0 +1 -1 ( u,
Fia ‘> P 0 | v,
2 Ax ~ (17)
Fop ‘ #1 0 1 ’ uy
Fyb J i Od \ A




increment load change for in-plane motion is simply due to the

pr

IO NS

The surface

change in area:

O/ vy

Figure 3. Follower Force for Inplane Motion.
8 B
F 0 u
xa a
F -1 0 +1 v
ya D a
_ P (18)
Fxb 2 0 ub
Fyb _—1 +1 0_ vb
The complete pressure follower load for a line element is a non-symmetric
element matrix
( F 0] +1 -1 u
ax a
) F -1 0+ v
< ay p a
’ Fbx 2 +1 0 1 uy
X Fby -1 +1 0 vy

Note that for a continuous multi-element line the diagonal partitions will

cancel.

The only remaining unsymmetric terms will occur at the ends.




The familiar initial stress differential stiffness matrix for an axial

load N is shown below for comparison with the follower load for

y N
| ”

element

\

Figure 4. Initial Stress Stiffness.

The Initial Stress Differential Stiffness of an axial load is:

( an 0 ((u
) Flo -1 1 ' v,
et - <
’ Fxb AXx 0 ’ ub
\ Fop i 1 il A
S, ~ o
KO

the same

(20)




Pressure Follower loads on a polygon

Some of the principles involved in the pressure follower load matrix are
now demonstrated on a closed two-dimensional polygon, showing that for uniform

pressure the diagonal terms vanish.

A’ K

/

pressure

P
(uniform)

"

&

12 (xi-xk)

Figure 5. General 2D Follower Force.
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Note that the pressure load at node j is independent of the location of j, and

only depends on the location of the two adjacent nodes i and k:

: oF . pAz
= DeAZet _ . _ o dx _ - (21)
Fix = P*02°3 (v, - ¥;)s R TR [ayk syi)
1 aFJY prAz
Fay T PhE (xk ) xi); iy = ox "% 2 (ka B axi)

Pressure Follower Loads on Three-Dimensional Surfaces

Expanding the preceding two-dimensional case into general three-dimen-

sional form, using a set of triangles enclosing node o as shown in Fig. 6 .

Figure 6. Triangular Surface Facets.

The nodal points o, h, i, ... etc., lie on a general surface. For uniform
pressure the net follower load at any enclosed node o is not affected by its

own displacement, which will be shown subsequently.

_1“_




Change of pressure load on a triangle is developed in vector form as follows.

—3
uc

Figure T. Vectors on a Surface Triangle.

’

c ¥

<>
The general nodal displacement vectors ua b’ Ye

where typically, Ga

fu, vy, vl

The sides of the triangle will be indexed by the opposite node, typical:

(22)

_“ 2..




The total pressure load vector on the triangle is given by the vector product:

F =p k=R (¢ x1r) - g r.xr) =B (@ xr) (23)

Thus the variation in pressure load is determined by the variation of the area

vector with the displacements aa:

2
2k + sk(a)) = F x R+ 0 - 5 (F + sf(a)) (24)
P,
§F(a) = p-6A(a) = 5T, xu,

The total variation of the area vector and pressure force with all nodal

displacements is:

> > > > >
F=r xu +r xu +r xu (25)

TN
On

To Consider the loads on the generally curved surface around a common node,
Figure 4, under uniform pressure p, the variation of the force at node o with

displacement 30 from one triangle (i) is using Equation 25:

. p
a'F’; (u) - ¢ Fo(i) X Go (26)

<>
Where ro(i) is the side opposite point "o" for triangle i.

_13_




Summarizing all triangles around the central node o:

™3

. p
LeF (u) = ¢ (

i Fo(i)) X u (27)

1 o}

However, note the vector sum I ;O(i) for all triangles is the closed circum-

ferential vector polygon around the central node, thus

Thus also for the general curved surface under uniform pressure, the variation
in pressure load on a cehtral node (0) with the displacement 30 at that node,

i.e. the diagonal partition vanishes.

The complete pressure follower matrix for triangle a,b,c is formed, using

equation 24 and 25, in terms of both geometry and displacement vectors:

->\ (—» > 1 > 15 >
F r X u r X u r X u
a a a il b b1 ¢ c
L ) |
e
p | |
> > > > > > >
F > = —< Py X U, Ty X U r, X u (28)
6 | 1
o - - ---"cCc-"-"=-"""60Cc--=-~
1 !

F r.oX W IPh. X u Ir X u
C ) \ a a b b c c
-14-
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The vector product ;a X Ja, typically, is expressed in component form:

-
2 sA(a) = 0 -Az, +py, (u (29)

+Az 0 —Axy ) A = [X ]{u }

Introducing the definition of the vector product matrices, [Xa], from Eq. 29,

typical, into Eq. 28:

F, Xg, Xp , X (u, ) (30)
[ I ) ‘ po

Fo 2 =P | Xa, % |, X <’ up 15 = po+ [K”°T{u}

FC -Xa| Xb|Xc‘ \uc)

where p, = p/6.

_15_




Closed System Under Uniform Pressure

The assembled pressure follower matrix becomes symmetrical if the
structure is a closed system and the pressure is uniform. This can be shown

as follows:

A typical coupling term between the common nodes b and d of two adjacent

triangles is:

Figure 8. Connected Plates.

> p > > > p > > p
Fb (ud) = g (rab XUy *rp. X ud) = g - Poo X Uy = ; [xac]{ud} (31)
and the reciprocal term is:
p > > > > p > > p
Fy () = 6 (rog ¥ Uy * gy X u,) = 6 (-rpe x9) = - 6 [Xac]{ub} (32

From Eq. (29) we note that -[x J=[x ]T, therefore ﬁd(ub)=[XaC]T{ub} and th

ac ac
forces are reciprocal.

Hence for two adjacent triangles the off diagonal terms along the commol

side are symmetrical if pressure is uniform. And since on a closed system an

side satisfies this condition, the resulting matrix is symmetrical.

_16_




EXAMPLE PROBLEMS

Pressure Follower Load Element Arch Buckling Test

To demonstrate the effectiveness of the developed pressure follower 1load
matrix for surface elements the classical arch problem under uniform pressure
was chosen. The theoretical critical buckling pressure is given on the next
page. For the full 180° arch this is a valid bifurcation buckling problem.

See Figure 9.

The arch was modeled as a short 1" long cylinder using QUAD4 shell ele-
ments. Test parameters were chosen so that the critical eigenvalue for the

theoretical buckling pressure should be

Th

The short cylinder was constrained to ascertain behavior like the theoretical

arch.

The model was analyzed using MSC/NASTRAN buckling Solution 5, with

increasing mesh density. Two series were run for comparison.

A. With follower load elements.

B. No follower load elements used.

As expected the comparison of the two series demonstrated the effectiveness of

the new follower load elements in providing an excellent solution (see Figure
10).

_“7_




STABILITY OF CIRCULAR ARCH

Hydrostatic uniform pressure
MSC/NASTRAN SOLUTION

ARCH UNDER HYDROSTATIC PRESSURE

Critical pressure: PCR = 3EI/R3
Dafa Selection: P = PcR = 3000 theoretical value
Thus the theoretical eigenvalue is ATh =1.0
Select I = pg'R3/3E = 3°103-103/3108
R =10.0; E =10% I -1.0

Hoopload: Py = p*R = 30000.- = 3.0E4

Circumferential grid point spacing Ay tested:

Ay = 30°
180
= go
4.50°

Figure 9. Buckling of a Pressurized Arch.
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1.417
1. :
4 1.362 1.3
o 1.335
1.3 .. without follower load matrix
M
o
1.2 2
P
~<
> .
1.1 1.052 with follower load matrix
1.011 .995 .99114
1.0 ,\r““w — 3/ ! g
o o .
30 18 9° angular spacing 45°
-9

Figure 10. Buckling of Cylinder under Uniform Pressure.
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Constraints for arch buckling

CYLINDRICAL DISPLACEMENT COORDINATE SYSTEM used:

R, T, Z
Generally free DOF: radial, U,
tangential, U,

axial rotation, U6

Constrained at all nodes: UZ(U3), eR(UM)’ eT(US)

Plane of Symmetry constraints (plane Yo, Zo)

Normal to plane translations: T(=U2)

In plane rotations: 8,(Ug)

Figure 11. Constraints for Arch Buckling.

_20_




CYLINDER VIBRATION TEST WITH PRESSURE FOLLOWER LOADS

Vibration Test Cyl. Quadrant

Figure 12. One Quadrant Cylinder Model.

Radius R = 5.0", height = 1"
Thickness t = 0.1"
Material: a) Isotropic E = 3.0 x 107 v = .33 p - 4.28

Pre-stress static solution with symmetric constraints for all planes.

Vibration modes ASY - ASY at both planes of symmetry (yz and xz planes).

Both ends of the cylinder have the same constraint.

® Eigenvalue Results {(New Elements) A1 =6 x 10_11
p = 1000 psi A2 =1 X 102
® Eigenvalue Results (Standard) A1 =5x 102
2

AZ =9 x 10

_..2‘| -




VIBRATION OF PRESSURIZED CONTAINER

TABLE 1. BOUNDARY CONSTRAINTS

The boundary constraints on all nodes in the two planes of symmetry are as

follows:
e Plane of symmetry -~ Plane Plane
X,y Z,X
e Symmetric SPC constraints: SYM u_ 6_10 u o6_ 0
i zZ Z Yy Yy X z
e Antisymmetric SPC constraints: ASY u u_ 6 u u_ 6
X 'y z Z X Yy
Static Analysis: SYM SYM
Internal pressure (footprint etec.)
results in pre-stressed displacements.
Vibration Analysis, with static pre-stress
1) Boundary SPC: SYM, SYM u, ex ey uy ex ez
free rigid body modes: uy
2) Boundary SPC: SYM, ASY u 6_89 u u_ o
Z Xy zZ Xy
free rigid body modes: uy, ez
3) Boundary SPC: ASY, SYM u_ u_ 6 u_ 6_ 8
X ¥y 2z y X 2
free rigid body modes: u,, ey
4) Boundary SPC: ASY, ASY u_ u_ o u_ u_ 6
X 'y 2z zZ X Yy
free rigid body modes: ex

-22-
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