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Abstract

Typically, in the aerospace industry, freebody loads are extracted
from an overall, coarsely meshed, finita element model , when a stress
analysis is required on a structural detajl]. Since the structural detajl
freebody is generally a different Size and has more detail than its
representation in the overall model, the structural detail is not in
equilibrium under these freebody loads, ang the distribution of the
freebody loads is not known. A finite elemant model, of the structural
detail , employing multi-point constraints (MPC's), solves both problems.
This paper discusses using MPC’'s to solve the above problems and derives
the relations to implement MPC's in PALZ.

A typical problem in stress analysis/design is sizing detail structure
using freebody loads. Often these freebody loads are internal loads of a
much larger and coarsely meshed structure. This js typical of aerospace
structural analysis. Figure | illustrates this case,

In Figure 1, a wing torque box is shown loaded by lift and fixed at
the fuselage. A wing torque box is a wing's basic load carrying structure.
Each structural member is in equilibrium under a set of freebody loads
which are actually torque box internal loads.

Consider the middle rib from the torque box as a freebody as shown in
Figure 2. Figure 2a shows the middle rib exactly as it was represented in
Figure 1 wWwith the rib freebody loads which are torque hox internal loads.
However Figure 2b shows the design details of the middle rijb. Notice the
detail freebody 1is actually a different size so that the freebody loads
from Figure 2a do not balance the detail freebody due to the unbalanced
moment ., Hdditionally, there is a hole.

Figure 3 shows the rib freebody 1oads in their exact relative
locations from Figure 2a (remember these loads are in equilibrium) and the
detail freebody from Figure 2b properly located with respect to these
loads. These loads must now be distributed from their equilibrium locations
to the detail freebody points. The MPC load distribution property does this
by connecting the freebody loads to the detail freebody points using a
distribution scheme as shown in Figure 3 Detail B. In the two sections that
follow, MPC s are defined, the distribution property derived, and a
distribution scheme is discussed.

Defining MPC's and Deriving the MPC Load Oistribytion Property

MPC's are defined in egqn 1. As an example, consider Figure &4,

eqn ! ZCiﬁui = 0.

Figure 4 shows two truss members of equal length (L), area (A), and Young's
modulus (E) joined at point 2. Since the members are ]inear displacement
elements (j.e. constant load/strain), the displacement at point 2 is the
average of points | and 3. Using eqgn 1, this is expressed as eqn 2a.




eqn 2a -!.*ul + .S*ul + .5*u3 = 0.

MPC s are, therefore, linear combinations of displacements. Generally, one
displacement 1s dependent on the remaining independent displacements. In
this case, uZ is dependent on independent displacements ul! and u3.

A special case of eqn 1 involves only one term. This is called a
single point constraint or SPC, and is often used to prevent rigid body

motion. For instance, in Figure 4, point 1 could be fixed. This
is expressed by egn 2b. .

eqn 2b -t.*ul = 0,

To derive the MPC load distribution property, eqn 1 is multiplied by a
constant QM and grouped with Ci to give egn 3 [11].

eqn 3 QM#YCisui =Z(OM*Ci)*ui = 0.

One law of structural mechanics states that the external work done by a
constraint on a structure in equilibrium is =zero. Since wui 1is a
displacement, and Ci is dimensionless, eqn 3 is a statement of this law
if the product QM#Ci is a load. In fact, QM is a generalized load
associated with a constraint equation (more generally called a Lagrange
multiplier) and QM#Ci is a load at the displacement ui. This is the load
distribution property of MPC's. SPC loads are determined similarly.

However, it still remains to find the value of QM so that QM+Ci can be
calculated. To do this, consider eqn 4.

eqn 4 [PEXT] = [P] + [RM] + [RS] = [KI1lul

where :

[PEXT] is the set of the external loads on a structure
summed at each point

[P] is the set of applied loads on a structure

{RM] is the set of constraint loads on a structure due to
the MPC's

[RS] is the set of constraint loads on a structure due to
the SPC’'s

{K]l is the stiffness matrix

{ul is the displacement matrix

Since QM*Ci are these constraint loads, [RM] and (RS] may be replaced by
[QMIICM] and [QS)M{CS], respectively. Using this relationship and moving
[RM] and [RS] to the right side of eqn 4, eqn 4 may be rewritten as eqn 5.
eqn 5 [P) = [KI1[ul - [CMI{QM) - [CSI[QS] = [K i -CM ! -CS1{u

QM

Qs

Finally, eqn | must be included for both the MPC'S and the SPC'S giving a
complete set of equations as eqn 6.



As an example of egn B, consider Figure 4 again. Eqn 7 is the
appropriate matrix using eqns 2, and the truss element stiffness matrix.
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where EA/L = t,

Applying PI = 2., P2 =190., P3 = 1, , the answers are given in Table la.

Referring to Table la, the displacement at point 2 is the average of
peints 1 and 3 as in eqn 2a. The RMi are zero since eqn 2a is consistent
with the element displacement function. The RSi simply balances the
applied load at point 3. The [PEXT] are the sum at each point of
the previous loads.

Now, consider Figure 4 again except that eqn 8 is used for the MPC
giving egn 9.

eqn 8 =1.%u2 + 1.#43 = 9.
b1 IR T -1 Jfu
P2 -1. 2 -1. i t. V0. u2
egn 9 ! ! _
P3} = . -1. .l =1, e. u3
0. Q. 1. -1. ! 0. ! o. QM
O.J J -1. Q. Q. | . ! o. J QSJ
Applying P1 = 0., P2 =90., P3 = t., the ansuers are given in Table 1h.

Referring to Table b, the displacements at points 2 and 3 are equal
a5 required by eqn 8. The RMi remove the applied load at point 3 and move
it to point 2, while the RSi at point 1 are unchanged. This is shown by the
itemized external loads that sum to [PEXT]. This illustrates the fact that
MPC's create external loads necessary to enforce the MPC displacement
relation. Then, these loads add and subtract from the applied loads,
causing the applied loads to distribute from the independent points to the



Choosing CMi to Distribute Applied tcads

Uarious distribution schemas can be chosen which then determine the
CMi in egn 1. However, this author prefers the CMi which are consistent
with the elements that originally created the freebody loads. The element
shape functions are used to do this. For instance, egn 2a is an example of
the truss member shape function. Figure 5 shows the recommended MPC
equations for the PAL2 commonly used elements. A detailed example using
"Figures 2 illustrates the procedure later in this paper.

Implementing MPC's in PALZ

Many main frame programs such as NASTRAN have MPC's implemented.
Although PAL2 does not have MPC's, the PALZ facility ADCAP2 provides the
global resequenced [K] and a DOF/row table which states in what [K] row a
degree of freedom (DOF) is located. Using a series of user written programs
running outside of PALZ, (K] is manipulated using transformation
techniques, and solved. Then, through further manipulations, a set of
displacements for every DOF in [K] is produced. These “displacements are
inserted into PAL2 for post processing (permitting restraint of every DOF
is a unique capability of PAL2). The required matrix manipulations are
derived below.

{ul may be rewritten as eqn 10a by means of a transformation.

eqn 1@a [ul = [MPCIlull

where: [MPC] relates the DOF's in [K] to the independent
DOF's [ull by means of egqn |

For example, eqn 10b relates the DOF's from Figure 4 to the independent
DOF’'s ul and u3 (as in eqn 2a).

eqn 10b ul . .0
ul

u2l = .5 .5
u3

u3 Q. 1.

Then, [ull is rewritten as eqn 1la also by means of a transformation.
eqn tla [ull = [SPCILuR]

where: [SPC] relates the independent DOF’'s in (ull to the
active (reduced set) DOF's in [uR]

For example, eqn 11b relates [ull from Figure 4 to the active [uR] assuming
eqn 2b.

eqn 11b ul 0..
= [u3]
u3 1.



Combining eqns 10a and 11a gives eqn 12.
eqn 12 (ul = [MPCILul] = (MPCILSPCICuR]
Further substituting egn 12 into [P = [Kilu] gives egns 13,
eqn 13a [P] = [Kllul = [(KIIMPCIISPCI[uR] = [K1ICSTIluR]

eqn 13b [CST] = [MPCILSPC]

For instance, assuming P3 = 1. in Figure 4 gives eqns
13c, 13d, and i3e.
T-O. ] r-l. -1. Q. rl . 0.
Q.
eqn 13¢ Q. = -1. 2. -1. .5 .5 [u3] =
I.
|1 4 _0 ~-1. -1 J o 1
(0.7 [ 1. - 0. [ o
egn 13d Q. = -1. 2. -1. .5 {lu3l
| ! J | 8. -1 -1 | | !
0. ]
eqn 13e [(CST1 = [MPCILSPC] = .5
b ]

[KI[CST] in egn 13a is generally unsymmetrical which does not permit using
efficient equation solving programs. However, [KI1[CST] is made symmetrical

by premultiplying eqn 13a by [CST] giving eqns 14,
eqn 14a {CSTTIIP] = [PR] = (CSTTILKIICSTIiuR] =[KR1{uR]
ean 14b  [KR] = [CSTTICKILLCST]
where: [CSTT] is the transpose of [CST]
[PR] is the reduced applied load set

{KR] is the reduced stiffness matrix

For instance, applying eqns 14 to eqn 13d gives egns 15,

eqn 15a (e. .5 1. 1fo. =00e. .5 1.1 -1. 2. -1, .5 [lu3]



eqn 15b [ 1. 1 =10.5 1lu3]

Once =qn 14a 1s solved for [uRl, [ul 1s obtained by eqn 12, and then [ul is
input to PALZ for post processing. For instance, u3 = 2 from eqn 15b. This
result 1s expanded using eqn 12, giving egn 16.

ul Q. @.
eqn 16 uz| = S 2.1 = i,
u3 1. 2.

Running a finite element model employing MPC's in PALZ consists of the
following steps:
1) Create a model in PALZ.
2) Define the MPC's, SPC’'s, and freebody loads and place this information
into a file such as MSLIN. {
a) MPC's: define the independent and dependent point numbers
and global displacement numbers (e.g. global translation x is 1),
and the appropriate CMi.
b) SPC's: define the constrained point numbers and global displacement
numbers.
c) Freebody loads: define the load values, the point numbers and the
displacement numbers.
2) Run PALZ2.
4) Run ADCAP2.
a) Select "Status" to create the DOF/row table.
b) Select "Equations” to create [Kl; select NASTRAN OQutputd4 format to
obtain nine significant figure stiffness values.
5) Read the DOF/row table and MSLIN to create [MPC1, [SPC1, and [P1.
6) Read [K1] and convert to a full symmetric matrix from a triangular matrix.
7)) Multiply [MPCI{SPC] = [CSTI
8) Perform two multiplications: [CSTTI[(K], then ([CSTTILKI)CST] = [KR]
9) Multiply [CSTTI[P] = [PR].
18) Solve for [uR] from [KRI[uR]l = [PR].
11) Multiply [CSTTI[uR] = [ul.
12) Read the OOF/row table and {ul to create a STAT2 displacement input
file.
13) Run STATZ2 and read the STATZ input file for post processing.

The next section illustrates the above procedure.

An Example Problem of MPC's Used for Freebody Analysis

The loads shown on the torque box in Figure 1 are similar to a
deployed flap forcing the lift center of pressure far aft. Since the forward
spar is stiffer, the lift load must move forward to the front spar. This is
accomplished by an interaction of the skins and the ribs where the ribs
transmit the lift forward, causing a couple on each rib. Each couple is
then balanced by in-plane shear (shear flow) from the skins. The loads on
the rib in Figure 2 may be interpreted as two couples, one of which is
caused by vertical shear, and the other by skin shear flou.

Figure 3 shows freebody loads from Figure 2 applied to the detailed
freebody using MPC's. Since in-plane quadrilaterals generated the freebody
loads, Figure S recommends using the truss member MPC equation.



The left edge , botiom edge, and right-most edge MPC's  are
straight-forward. The slanted edge and right edge MPC's need some
discussion. The in-plane quadrilateral MPC maintains a straight (unwarped)
edge. In a sense, this is a local cocrdinate system where the MPC accepts
and distributes loads parallel and Perpendicular to the edge. When the MPC
does not end at an 1ndependent DOF, the MpPC must be connected to an
independent DOF through a system of MPC’'s in order to accept and distribute
load while maintaining this local coordinate system. This s Similar to
loading the edge through a system of linkages. For example, point A is the
intersection of the slanted adge MPC and the right-most edge MPC. The
slanted edge MPC accepts load on the right from point A via the right-most
edge MPC, and this MPC is connected to independent points.

The MPC's are written using the detail geometry in Figure B. The
detail tabulations are shown in Tables 2. Figure B also shows that
statically determinate weak Springs are added to prevent rigid body motion.
These spring stiffnesses should be about 1.E-5 times the average member
stiffness to prevent matrix ill-conditioning while only balancing any small
imbalance in the freebody loads. In PALZ, springs must have two points of
attachment so that the SPC's, in this example, only constrain the springs
to ground. Now, the methods of the previous sections are used, and the
results are shown in Figure 7.

In Figure 7, the edges with MPC's are straight (not warped) as
required. However, the lines around the hole are warped since there were no
constraints therae.

From a strass analysis/design standpoint, the rib could now be further
modified. For instance, a frame structure equal in shear stiffness to tha
missing quadrilateral could be added around the hole to increase the rib's
shear efficiency. Once satisfactorily modified, the detail model could now
be converted to a NASTRAN model via ADCAP2, sent to a main frame computer,
converted to a NASTRAN super element, and inserted into the overall torque
box model. Once the next overall run is completed, the rib’s boundary
displacements are returned to the stress analyst, and applied to the
detailed rib model to produce a new set of freebody loads. These new loads
can then be used as in this example for further rih improvements.

Conclusions

1. Using MPC's with PALZ, freebody loads from an overall coarse model
can be applied to a detaijil freebody finite element mode] resulting in a
balanced detail freebody.

2. MPC’'s have a load distribution property which distributes the
freebody loads to the detail freebody points.

3. This author prefers the MPC coefficients which are consistent with
the elements that originally creatad the freebody loads; namely, using the
element shape function itself,

4. MPC's are not implemented in PAL2Z. Houwever using the PAL?2 facility
ADCAP2, and the appropriate user writtan programs running outside of PAL2 ,
MPC’'s can be implemented. :

5. Once a detail freebody with MPC's, SPC's and freebody loads has
been arranged, the stress analyst may improve the design. Once complete,
the model can he converted to a NASTRAN model, passed to a main frame
computer, converted to super element, and added to the overall model. Once
the next overall run is completed, the detail freebody displacements can be
passed to the  stress analyst to obtain a new set of freebody loads and
further detaijl freebody improvemant.
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Figure 2a: Fresbody Loads and Freebody froa Figure 1
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Figure 2: Middle Rib Freesbodies
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Figure 4: Example Truss Member Problee
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l1-Dimensional: =) L ?_‘B;

Truss
{ Dep DOF : Indep DOF : MPC eqgn b
! u? H ul, u3 i ~1.%u2 + L2/L3%ul + L1/L3+u3 = @. !
Beam
{ Dep DOF ! Indep DOF ] MPC eqn (21 !
! v2 Povi,al,v2,a2 ] -1.%v2 4 Mli#vl +M2%al + M3*v2 + M4xa2 = @, |
i a2 i vl,al,v2.,a2 ! -1.#a2 + Ni#vl +N2xal + N3*v2 + N4#a2 = @, |
For: Ml = (1. = 3.%L1%%2_ /1.3%42. + 2.#L1%%3 /L3843, Yayl

M2 = (L1 - 2.8L1%#2./L3 + L1%%3./L3%+2. )eal
M3 = ( 3.4L1##2./L3%%2. - 2. 5L1ss3. /L343, )ay2
M& = ( —1.8L1%22./L3 + L1s*3./L3%s2. )sa2

NI = ( ~B.sL1/L3%%2. + G.eL1#42. /L3423, )av]
N2 = (1. = 4.0L1/L3 + 3.5L1%42. /L3422, )eal
N3 = ( B.#L1/L3%#2. - G.aL1s%2, /L3583, )y

N4 = ( -2.#L1/L3 - 3.#L1%22,/L3#22, )#al

2 - Dimensional: For triangular and quadrilateral edges, use the truss
relationship for in-plane behavior and the beam relationship
for bending behavior.

Figure 5: Recommended MPC Equations for PAL2 Elements
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Qs = -1.

Summary of Calculations for Eqn 7

QM = 0.

Table la:

Qs

QM = -1,

RMi = QM#*CMi
Summary of Calculations for Egqns 7 and 8

3. PEXTi = Pi + RMi + RSi

2. RSi = QS5#CSi

t.

Table 1b: Summary of Calculations for Eqn 8

Note:
Table 1:
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Oependent
Point

Point

Point

Left Edge MPC's

% Distance to
Indep. Point 1

% Distance to
Indep. Point 17

25. 75. D4 =

55. 45, D6 =

90. 10. D8 =
Bottom Edge MPC's
% Distance to | % Distance to H
Indep. Point ) ! Indep. Point 19 !

33.3 ! 6.7 1 D2 =,

58. ! 5o. i b3 = .

965.7 ! 3.33 ! D13 =

Right-Most Edge MPC's

]
% Distance to ! % Distance to
Indep. Point 18 ! Indep. Point 19

1
]
[}
i
]
1
1
1
1
:
'
]

Table 2a: Straight-Forward MPC's

.25+D17 + . 75+D1
.55+D17 + ,45+D|
L90+D17 + 19+D1

MPC
Equation
333+D19 + .667+D1
500+D19 + .500+D1

.967+D19 + .@33+D1

MPC
Equation

.028+D13 + .972+D18



Right Edge MPC's

Dependent | % Distance to i % Distance to : MPC !
Point { Indep. Point 13 | Indep. Point 16 | Equation ]
14 ! 30. ! 70. ! D14 = .300+D16 + .700+D13 !
15 ! 650. | 40. i DI5 = .600+D16 + .400+D13 !
Inserting
D13 = ,967+D19 + ,0333+D1 DA = .028+D19 + .972s+D18
DI6 = .966+DA + .0@334+D8 D8 = .900+017 + .100+D!
{ Dependent ! MPC H
: Point ! Equation H
! 14 { D14 = .0243+D1 + _685+D19 + .0038@2*D17 + .282+D18 !
] 15 ! D15 = ,0153*D1 + .403+0D19 + .01800+D17 + .563«D18 !
Slanted Edge MPC's
Dependent | % Distance to ! % Distance to ! MPC !
Point { Indep. Point 8 | Indep. Point A | Equation |
7 ] 33.3 i B6.6 i D7 = ,333«DA + .GEG+DB8 !
12 ' 50. ] 50. i D12 = .500+«DA + .500+D8 !
16 ! 96.6 ' 3.3 { DIE = .966+«DA + .@33+0D8 !
Inserting:
D8 = .3500+D17 + .1000+D1
DA = .028+D19 + .9720+DI8
i\ Dependent ! MPC H
! Point i Equation H
' 7 i D7 = .0666+D1 + .599=D17 + .324+«D18 + .009+D19 !
! 12 i D12 = .0500+D1 + .450+D17 + .486=D18 + .@14xDt9 !
' 16 i D16 = ,0033+D1 + .030+D17 + .939«D18 + .@27+D19 !

Table 2b: MPC’'s Connected to the Freebody Loads Through Other MPC’'s



