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Abstract

This paper presents some research results obtained recently in using
the p-version of the Finite Element Method (FEM) for shape optimal de-
sign. The use of Bezier and B-spline curves to define design elements has

matrix).

Some classical shape optimal design problems have been tested using
the CONLIN optimizer. Preliminary results indicate that similar opti-
mal shapes can be obtained with fewer degrees of freedom than when
compared to the h-version FEM. As with the h-version, ten iterations
are sufficient for convergence in most of the problems. Extremely rapid
convergence was observed when using lower order B-spline curves (4-5
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1 INTRODUCTION

In any finite element analysis, discretization plays a critical role. Even for very
simple problems unacceptable results will be obtained if the mesh is poorly
designed. When shape optimal design is considered, finite element meshing
becomes still a more important subject of concern. In a shape optimization
process, the analyst usually starts with a rough geometrical description of a
model and hopes to obtain an optimal shape with respect to the design variables
he has selected. The final shape of the model, even though similar to the initial
shape, will have completely different geometric aspect ratios. Therefore even
the best mesh designed for the initial shape is usually not appropriate for the
final shape, causing inacurracies in the computed stresses and displacements, as
well as their sensitivity derivatives. As a result the "optimal” design generated
by the optimization process might be completely meaningless.

Because the external boundary of the structure is modified at each stage
of the optimization process, the finite element mesh must be appropriately
updated in order to maintain the desired accuracy. In the conventional h-
version of the Finite Element Method (FEM), it is therefore highly desirable, if
not necessary, to include an adaptive mesh refinement scheme based on error
estimates. Unfortunately a fully automated mesh adaptation capability is not
yet at hand, and much research is still needed before incorporating such a tool
within the shape optimization process. The task of maintaining the quality
and the integrity of the finite element mesh becomes even more complicated
when the analyst has to worry about allowable element distortion. In a general
sense, an individual finite element will perform best when it is not distorted. For
example the stresses and displacements computed from a quadrilateral element
in a properly designed mesh will be quite accurate if the shape of the element
Is close to a rectangle of aspect ratio less than 3. The further the element
1s distorted into a trapezoid or a parallelogram, the further the deterioration
of the computed results, with its interior angle being a reasonable measure of
the deterioration. It is not obvious, in a shape optimization process, to avoid
individual element distortion. As a result, it is desirable to employ elements
that do not exhibit this sensitivity to shape.

An alternative to mesh adaptation techniques is to resort to an analysis
model that rely more on a boundary representation. Recent progress in the p-
version of the finite element method makes it possible to consider higher order
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elements for implementation into commercially available FEM systems such as
MSC/NASTRAN. In these developments, high order elements were successfully
tested in conjunction with linear blending mapping techniques [1,2]. It was
demonstrated that very good results can be obtained in smooth problems when
the model is discretized with only the minimum number of quadrangles. It has
also been shown that with 2 high enough p-order the elements become less
sensitive to shape, and displacements and stresses can be computed accurately
In the entire domain. This nice matching between this methodology and the
requirements of shape optimization was the motivation for further research.
The research results reported in this paper are concerned with shape opti-
mal design of two-dimensional structures discretized with higher order elements.
When used for shape optimal design applications, these elements offer many
advantages in comparison with conventional low order elements. For example
they facilitate considerably the definition of 2 suitable design model, because
they mainly necessitate a boundary representation The development effort
started from a prototype FEM program that implements a 8-order quadrilat-
eral element in conjunction with linear blending mapping techniques. The
adaptation of this program to shape optimization has first required the con-
stderation of other blending functions compatible with our geometric modeling
scheme (Bezier, B-splines). Those blending functions are indeed needed in our
approach to shape sensitivity analysis, which evaluates the objective function

to sensitivity analysis has proven to be quite efficient in a previous research
project related to shape optimization using conventional low order elements
[3].

After briefly reviewing how to properly describe the structural geometry
using a small number of design variables (positions of control points), some
basic properties of Bezjer and B-spline curves will be explained and illustrated
on simple examples. It will then be shown that the p-version 2-D elastic element
can be extended to employ part of a Bezier or B-spline curve as its element
side, provided that two simple rules are followed:

® the element order must be at least equal to the highest degree of its side
curves;

® each element side should be defined by only one parametric curve.



This new element has been tested successfully with the patch test. More-
over, it is compatible, has no preferred direction and contains all the required
rigid body modes (three zero eigenvalues are found in the element stiffness
matrix). Some classical shape optimal design problems have been tested using
the CONLIN optimizer. The results obtained up to now indicate that similar
optimal shapes can be obtained with fewer degrees of freedom than when com-
pared to the h-version FEM. As with the h-version, ten iterations are sufficient
for convergence in most of the problems. Extremely rapid convergence was
observed when using lower order B-spline curves (4-5 order).

2 GEOMETRIC DESIGN MODEL

The approach followed to describe the structural geometry is described in detail
in previous papers [3,4,5], and can be summarized as follows. An internal
parametric representation, typical of modern techniques employed in computer
aided geometric design, is adopted. The structure is decomposed into a few
subregions of simple geometry. These subregions are described in a compact
way by using a limited number of control nodes. During the optimization
process the geometry of conveniently selected subregions is allowed to change:
these regions are called design elements. The movements of the corresponding
control nodes are the design variables.

In this representation the FEM mesh can be directly derived from the co-
ordinates of the control nodes. This feature leads to the distinction between a
design model and an analysis model. The design model is made up of the small
number of design elements, whose geometry is determined by the control node
positions, and of the fixed subregions. By entering a relatively small number of
design elements, it is possible to create a compact design model that describes
well the structure to be optimized. The analysis model is the finite element
model, characterized by the node coordinates of the mesh, the types and ma-
terial properties of the elements, the applied loads and boundary conditions,
etc... The analysis model can directly be derived from the design model at
any stage of the iterative optimization process, because of the adopted inter-
nal parametric representation. This feature considerably facilitates the task of
implementing the sensitivity analysis.

Two different types of parametric curves were investigated to define the



design element boundaries. Bezier and B-spline curves are commonly used in
Computer Aided Design (CAD) systems in order to develop complex geometric
models (see e.g. Ref. [6]). Both types of curve are defined through the concept
of control points, and they are therefore well suited for the description of our
design model. ¥

2.1 Bezier Curve

A Bezier curve is defined by the "vertices” of a polygon which uniquely defines
the curve shape. The mathematical basis of the Bezier curve is the Bernstein

function which is a polynomial blending function. The basis function is given
by

Jn.i(f) = C'zz.ifi(]- - f)”_i

where
n!
(M —1)
where 1 is the degree of the polynomial and : the particular vertex in the
ordered set (from 0 to n). The curve points are given by

(’nAi =

Pty=S P, () 0<t<1

=0

where P represent the position vectors of the various vertices. In the two-
dimensional case (2-D), 13, = (;.y;). For 3-D problems, ﬁ, = (i 3.

Bezier curves exhibit several interesting properties that can be summarized
as follows. A nth degree Bezier curve is specified by n+1 vertices. The locations
and the slopes of the starting and ending points of a Bezier curve are the same
as those of the defining polygon. A Bezier curve is one parametric curve.
A change in one vertex is felt throughout the entire curve. As an example,
consider a four vertices cubic Bezier curve (n=3).

Jsolt) = Caat™1— 170 =(1—1)>
Jsa(t) = Cast'(1 =171 = 341 — t)?
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2.2 B-spline Curve

A B-spline curve is also associated with the "vertices” of a polygon but it has
a more flexible basis. This basis, called B-spline basis, is generally nonglobal
and allows the order of the resulting curve to be defined independently of the
number of defining polygon vertices. A B-spline basis of order n (degree n-1)
which has a non-zero value between # = t,tot =+, is denoted as I, (1),
where ti-are elements of the knot vector which will be discussed below. Any
B-spline basis B, (t) can be found by the recursive relation:

1. fn =1 and f<t <ty
Bi.(#) = 0. if n =1 and >t >4y,

(7‘ “fi)/(fi—l-u—l “f[)Bi.n—l(f)"*'

(f1'+n—f )/(fH-n - fi-}—l )Bi+l.n—l(f)- 'f no>1

The B-spline curve is given by
L.
=0

where P. are the position vectors of the /- + 1 polygon vertices.

A knot vector is a series of integers ti, such that ti < tiyy for all ;. The
values of ti are considered to be parametric knots. They are used to indicate the
range of the parameter t. It js required to specify knots of multiplicity n at both

of order n which give n-1 order continuity all over the curve. Therefore the
highest order with which a B-spline can be defined is k+1. the number of
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second order B-spline curve gives back the defining polygon. Different order
B-spline curves defined by the same polygon, have the same end slopes. As an
example, let us consider 3 third order (n=3, degree 2) B-spline curve defined
by four vertices (k+1=4).

7(mu.r = l' - n + 2 = 2

The knot vector is (0001222) Forp<t« 1,

1 B, B;, B;

0 0 0 (1 —¢)°
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The parametric equation for 0jti1 is
Pit) = E)Bus; + I_)‘IBI.I.’. + ﬁsz.:.s
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which is quadratic and independent of P;. For 1 <t <2,
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The parametric equation for 1 « - 9 s

P(” = f;iBI,:’. + ﬁ_rB_{‘: + ‘ﬁ: )B::_':

[



or
ﬁ(f) = (21:;1 '—Qﬁz +ﬁ;) +(—"2ﬁ1 +4ﬁz “Qﬁz)f+(0-5ﬁ1 - 1-5ﬁz+ﬁ3)f2

which is quadratic and independent of P0.

It is important to realize that such a B-spline curve is constructed by two
quadratic parametric curves. It has first order continuity throughout the entire
curve but it suffers from second order discontinuity at its middle point.

3 ANALYSIS MODEL: HIGH ORDER EL-
EMENTS |

The main distinguishing factor between the h-version and the p-version of the
finite element method is that the shape functions used for element behavior in
the p-version are not restricted to be linear or quadratic. On the contrary they
can be defined with an arbitrary order p, with usually 2 < p < 8. Moreover, in
the p-version displacement FEM, the generalized coordinate associated with the
displacement shape function does not stand for the displacement of a particular
point. It is important to emphasize that the p-element is a parametric element.
The principal idea of a parametric element is to model both the arbitrary
geometry and its behavior through a mapping or a coordinate transformation
in which the behavior in a simple region is distorted into a complex shape.

3.1 Modified p-Element

In the context of shape optimal design, p-elements are particularly interesting
because they can almost completely match the "design elements” needed to
construct the geometric model [4]. For this reason the geometry of any side
of the 2-D elastic element was extended to use part of a Bezier or B-spline
curve. The mapping technique used here is linear blending. By this method,
the mapping of the interior points i1s uniquely determined by the four curves
which define the boundary of the real domain. Since the newly extended
curves are parametric curves, the parameter of the curve equation is directly
used as the natural coordinate of the simple region or used through a linear
transformation. So far, the mapping of the geometry of an element with a
higher order boundary curve has been defined. Now we will give attention to
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the mapping of the behavior. The displacement shape functions used in this

etry and for the behavior,

The original p-element from which the present research started yses first
or second order curve as element sides [1]. This element has all the basjc
element Properties such as constant strain mode. three rigid body modes, and
no preferred direction. Two fundamental rules have been found in using a
higher order curye as an element side to keep all these properties:

* the element order should not be Jess than the highest degree of its side
curves;

between the two elements may be a Bezier curve or a 2nd degree B-spline curve
depending on the example. Both curves have the same defining polygon which
has 4 vertices P0=(1.0.), Pl:(1.4,0.3), P2=(0.6,0.7), and P3=(1.1.).

3.2 Constant strain mode

will remain 3 Bezier curve but the four vertices become Iy=q(1 + 0.5d.0.),
Py=q144 0.77.0.3), P, = (0.6 + 0.3 0.7), and P, = (1. +0.54.1.). The



displacement along the curve (x-direction) can be expressed as
wl(t) = 0.5d 4+ 0.6t — 1.6dt* + 1.3d+"

which is a parametric polynomial equation of degree 3. It is clear that a p-
element of order 2 cannot represent this displacement field but a p-element
of order 3 can represent it exactly. Therefore, for a p-element to have the
constant strain mode, the order of the element should be no less than the
highest degree of its side curves. This constitutes the first rule. Figure 2 shows
the strain contour for this example with an order 2 element. When tested with
an order 3 element, a constant strain mode was evident.

Now let us use a B-spline curve of degree 2 (order 3) defined by the same
polygon to substitute for the Bezier curve. Again let the structure experience
a constant strain test. If the structure do have the constant strain mode, then
the deformed curve will remain a B-spline curve and the required displacement
along the curve (x-direction) should be found as:

u(t) = 0.5d 4+ 0.4dt — 0.4dt? for 0 < + — 1
vt) = 1.3d = 1.2dt + 0.4dt? for1 <t < 2

which are two quadratic parametric equations. This displacement field has first
order continuity throughout the curve but it has a second order discontinuity
at t=1. Since the displacement shape functions defined in this study do not
have a second order discontinuity at their middle point, this displacement field
will never be exactly matched. Thus the second rule 1s that an element side
should be defined by only one parametric curve. Otherwise it will not have the
constant strain mode. Tests were made on this example with the p-element
orders ranging from 2 through 8. Their highest and lowest strains are given in

Table 1.

3.3 Rotational rigid body mode

Exactly the same requirements have also been found for the element to present
the rotational rigid body mode. For an element to have the rotational rigid
body mode, its displacement shape functions should be able to represent its
rotational displacement field exactly (infinitesimal rotation).

Considering again the example with a Bezier curve side. if the element is
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the mMapping of the behavior, The displacement shape functions used in this
study are based on the integral of the Legendre polynomials. The displacement
shape functions of a side mode for a quadrilatera| element are integrals of the
Legendre Polynomials. It is important to note that these shape functions are

will remain 3 Bezier curye but the four vertices become Iy=1(1. 4+ 0.54.0).),
P=(14 4+ 0.7, (0.3}, P =q0g + 0.3 0.7), and P,o=1. +0.5d4.1.). The
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displacement along the curye (x-direction) can be expressed 3¢

) = 0.5d 4 0.6 _ LGdt* 4 1 3,443

Now let us yse 5 B-spline curve of degree 2 (order 3) defined by the same
polygon to substitute for the Bezier curve. Again let the structure experience
d constant strain test. If the structure do haye the constant strain mode, then
the deformed curve will remain 4 B-spline curve and the required displacement
along the curye (x-direction) should be found as:

1/(;‘) = 05(/+ ”—l(]f — Ol(/f') fOF 0 <t 1
MF) = 1.3d — 1.9,4 T 04 for 1 < 2



the rotational rigid body mode in this example.
Now the side curve is considered to be a B-spline. Again the displacement
field along the curve side now due to the rigid body rotation will have a second

second rule presented above.

The eigenvalues of the element stiffness matrix are computed to check the
existence of three rigid body modes. For all cases, there are always at least
two zero eigenvalues which correspond to two translational rigid body modes.
A comparison of the third eigenvalue is given in Figure 3 for the two cases
mentioned above, as well as the case of an element with a circular side. A
zero or nonzero third eigenvalue indeed shows up for all cases, as it should be

[BHC.} =)

where (', denote the generalized coordinates associated with the displacement
shape functions. C'; is the consistent load vector corresponding to the shape
functions. [I] is the global stiffness matrix.
Differentiating this set of equations with respect to the design variable xi,
gives
L. dC, ey
By = 7y

dr;

Il[\-
N . Ic
(/.r,' ; [t/.)',; ! ”}
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This shows that the derivatives of the generalized coordinates, {J/C', /dr;}, can
be obtained by solving the original set of equations with another load vector
{4} the so-called pseudo-loads:

dC'y

dIy
)= (- (18
dr,

(I.I','

N

Although the finite difference approach used in the sequel could be applied
to get the derivatives of the consistent load vector {C'/}, for sake of simplicity,
we shall assume that {C';} = 0 in this paper.

The first derivatives of the stiffness matrix with respect to the design vari-
ables are calculated from the finite difference equations:

dIX
e,

X

| = (Ko, 4+ drej)] — (IN(r)]))/dr

where r; represents a small amount of perturbation. [A'(.x; + dr;)] is the
reassembled stiffness matrix of the structure with a perturbation dxi in the ith
design variable .-,. Thus the pseudo-load can be formulated as

foit = (N, + dae) {C) = [K(ep)[{C )/ d
([I (s + o, )”(',,} — {('f} )/ dw;

{l

The derivatives of the generalized coordinates can now be obtained by solving
the equilibrium equations with these additional pseudo-loads:

{]C'H -1 —
(=181
a.r;
The number of pseudo-loads required is equal to the number of design
variables times the number of loading conditions.
The solution {C',(.r;+d.r;)} which corresponds to the perturbated structure

can be approximated by

dAC,(.r;)
s

?

(ol +dep) = (Cutrn] +

}(I,I',‘
This solution {C",(.r; + dx;)} is used along with the shape functions which
correspond to the perturbated structure to obtain the displacements 1/(.r; 4., )

and stresses m(.;; + d.r, ) of the perturbated structure.
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Then the derivatives of each displacement and stress functions are evaluated
through the following finite difference scheme:

du

= = (A ) = u(ag))/de,

l].l',‘

== (alx; +dr;) —a(r;))/dy

5 EXAMPLES OF APPLICATION

In this section, two typical design problems are offered to demonstrate the
effectiveness of using the p-version FEM for shape optimization. Because of
its many attraclive features, the CONLIN optimizer was employed to solve the
numetical oplimization problem generated by the sensitivity analysis module.
The convex linearization technique on which CONLIN relies has proven to be
specially well suited for a broad class of structural optimization problems. This
general and efficient optimizer benefits from some major advantages, which
make it particularly well adapted to the present study (see Refs. [4,5])

5.1 Hole in a Biaxial Stress Field

A now classical test problem in shape optimal design is to find the best possible
shape of a hole in an infinite plate under a biaxial stress field, such that stress
concentration is minimized along the hole boundary. The problem considered is
a square plate with a hole at its center. Uniform distributed forces are applied
normal to the plate boundary. The force in the x-direction is twice that in the
y-direction. We want to find a shape of the hole to minimize the maximum Von
Mises stress of this structure. The theoretical solution of the original problem
is an ellipse. Its axis ratio depends on the ratio of the two axial stresses but its
size does not influence the stress concentration. The solution of the problem
we posed is expected to be close to an ellipse but its size will tend to diminish
because we are dealing with a finite plate. Therefore a constiaint must be
applied on the size of the hole.

Due to the symmetry of both the geometry and the load, only a quarter of
the plate is modeled. The hole is described by a 7 node Bezier curve. The node
locations along preassigned directions are considered as the design variables.

13



Figure 4 shows the layout of the structure and the nodal directions of freedom.
To keep the tangency requirements at both ends of the curve, the end node
and the node next to it are linked together as one design variable. Thus this
problem has five design variables. The structure is modeled by 4 elements.
The two elements along the hole form the design element. The other two
belong to the fixed element. The problem is set up to minimize the maximurm
Von Mises stress in the structure subject to a bound on its weight (in order to
limit the reduction of the hole). Since the maximum stress for this structure
will always lie on the hole boundary (thickness is assumed uniform), eighteen
evenly spaced points are picked along the curve boundary for monitoring the
maximum Von Mises stress.

This problem is solved first with elements of order 8, the highest available
order in the current implementation. The nice smooth stress distribution over
the entire structure can be seen from the plot of the stress contours. Figures
5 and 6 show the stress contours of the initial and optimized structures, re-
spectively. Note that one can hardly see the stress Jump between the elements.
Figure 7 gives the design history of the curve shape and its defining polygon,
and it demonstrates the excellent convergence of the optimization process.
The curves after 3 iterations are completely overlapped with each other. It is
Interesting to note that this convergence Is even faster than when compared to
the problem solved with the h-version FEM [3]. The reasons of this remarkable
convergence speed may be because the stress is smooth over a large area and
the stress constraints are set along the curve boundary.

The same problem was also solved with elements of order 2 through 7.
Comparison of their optimized curve shapes and their defining polygons is given
in Figure 8, which shows the nice convergence when increasing the element
order. Since the final shape solved with element order 5 is already so close
to that solved with element order 8, it is interesting to find out what is the
maximum Von Mises stress when this structure is analyzed with element order
8. Thus we re-analyzed all the final structures with element order 8. The
maximum Von Mises stresses found in optimizing with different orders are
given in Table 2 along with those obtained by re-analyzing with element order
8. In Table 2, we also give the CPU time spent for one structural analysis
and that for the full optimization process (all calculation were done on a IBM
4341). By comparing both the stress difference and the cost in CPU time, it
seems that element order 6 is the best choice bu* the results of element order 5
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are already very accurate. It should be noted that in this problem the element
of order 5 does not have the rotational rigid body mode but since the curve is
very smooth, this does not reduce its accuracy. The correct choice of element
order will be further discussed in the next example.

5.2 Fillet

The fillet design problem is also a commonly used example in shape optimal
design. In this problem a tension plate with a transition zone connecting two
different width is considered. Due to the symmetry about both X and Y axes,
only a quarter of the plate is considered. The actual structure being analyzed
is given in Figure 9 along with its dimensions and notation. The segments
S3 and S4 are the symmetric lines of the fillet. The boundary segment S1 is
to be varied, with points at A and B fixed. A uniformly distributed load is
applied on S2. The optimal design problem is again to find a boundary shape
S1 to minimize the stress concentration, but no weight constraint is applied
in this case. The boundary shape S1 is modeled by a 6 node Bezier curve.
With the two end nodes fixed at A and B, the problem has 4 design variables.
The structure is modeled with 6 p-elements. The two elements at the ends
are fixed. The center part, which contains the boundary segment S1, is evenly
divided into 4 p-elements to form the design element. The reason to introduce
smaller elements in this part is that a more accurate stress prediction is desired
along the curve boundary, where stress concentration is expected to occur.
Again evenly spaced points along the curve boundary are picked for evaluating
the maximum Von Mises stress.

This problem was also solved with all different p-element orders. the follow-
ing results correspond to element order 8. The stress contours corresponding
to the initial and final designs are shown in Figures 10 and 11. The initial high
stress concentration at point B, Von Mises stress 294 N/mm?, is smoothed
out along the curve boundary with the maximum Von Mises stress being 146
N/mn? in the final design. The stress concentration factor is reduced from
2.45 to 1.22. The excellent convergence can be seen from its design history
(Figure 12) where, after only four iterations, the design is completely con-
verged.

Comparisons of the results of using different p-element orders are given in
Figure 13 and Table 3. Figure 13 gives the final curve shapes and their defining
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and analysis models. In the p-version FEM, the stresses along an element
side are as accurate as those inside the element. This js Important because
generally the critical stress constraints are found along the design element
boundary, Numerical experiments show that the error in the stresses, found
using higher order p-elements, is Insensitive to perturbations in the shape of
the element. This means that the shape sensitivity derivatives calculated by
a finite difference method are more accurate and reliable. These extremely
accurate and stable sensitivity derivatives have been observed over a very wide
range of perturbations (from 0.1

in
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Table 1. Strain/Stress for Various Element Orders

element | Strain in the x-dir. Von Mises stress
order p | maximum | minimum | maximum | minimum
(x107?) | (x1077)

2 0.6095 0.3081 68.23 145.42
3 0.5174 0.4742 05.24 117.32
4 0.5255 0.4701 93.71 112.83
5 0.5085 0.4907 97.93 107.88
6 0.5106 0.4899 97.75 107.34
7 0.5049 0.4957 99.15 104.89
8 0.5054 0.4954 99.09 104.64

Table 2. Quarter Plate Problem - Summary of Results

element | maximum Von Mises Stress CPU-Time (sec.)
order p | results of re-analysed one full
order p with p=8 analysis | optimization

2 304.84 458.65 49 36.6

3 288.51 317.86 7.0 70.8

4 288.60 308.41 9.9 119.2

5 285.57 289.14 19.4 270.9

6 285.44 286.36 31.6 475.8

7 285.45 285.78 64.4 1007.9

8 285.42 - 103.4 1724.2
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Table 3. Fillet Problem - Summary of Results

" element | maximum Von Mises Stress CPU-Time (sec.)
order p | results of re-analysed one full
order p with p=8 analysis | optimization
2 134.94 197.43 10.0 62.7
3 138.80 182.07 13.5 123.1
4 141.77 169.35 17.9 210.4
5 142.78 159.01 31.8 480.4
6 144 .82 148.92 50.2 855.2
7 145.77 147.58 110.3 1833.7
8 146.26 - 157.2 3081.4
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FIGURE 1. 2-ELEMENT STRUCTURAL LAYOUT
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FIGURE 2. STRAIN CONTOURS (ORDER 2)



element 4 Node Bezier 4 Node B-spline Circle
order (3rd degree) (2nd degree) (infinite degree)
2 0.713E-01 0.102E+00 0.266E-02
3 -0.134E-14 0.744E-02 0.168E-03
4 -0.131E-14 0.566E-02 0.883E-06
5 -0.203E-14 0.132E-02 0.211E-07
6 -0.242E-14 0.127E-02 0.462E-10
7 -0.343E-14 0.380E-03 0.570E-12
8 -0.294E-14 0.362E-03 -0.135E-14

Figuré 3. The Third Eigenvalue of Element Stiffness Matrix

FIGURE 4. DESIGN MODEL FOR QUARTER PLATE PROBLEM
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FIGURE 9. DESIGN MODEL FOR FILLET PROBLEM
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FIGURE 10. VON MISES STRESS - INITIAL DESIGN
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FIGURE 11. VON MISES STRESS - FINAL DESIGN

FIGURE 12. ITERATION HISTORY FOR FILLET PROBLEM



FIGURE 13. FINAL DESIGNS FOR VARIOUS p-ORDERS
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FIGURE 14. COMPARISON OF BEZIER AND B-SPLINE RESULTS



