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Abstract

This paper presents a method to compute the sensitivities of displace-
ments and natural frequencies to the changes in grid locations. The sen-
sitivities are computed within MSC/NASTRAN using the semi-analytical
method via a DMAP program. New software was developed to assist in the
selection of design variables, and plot the spatial variation of the sensitiv-
ities on the finite element(FE) model using PDA/PATRAN. Two example
problems demonstrate the technique.

1 INTRODUCTION

Structural design is a complex process which has the goal of generating a
product which satisfies performance requirements in a cost-effective man-
ner. Traditionally, the design methodology relies on analyzing the design
to determine its structural response and then repeatedly remodifying and
reanalyzing to obtain more desirable performance. The remodification and
reanalysis can either be an intutively based optimization under the control
of the designer or a mathematically based optimization under computer
control.

Sensitivity methods have facilitated the optimization process by replac-
ing the solution of a finite element problem with an easy-to-compute ap-
proximation. MSC/NASTRAN implemented this capability for changes in
element related properties such as cross-sectional areas and material prop-



erties, but not, so far, for general changes in geometry which we characterize
here as grid changes[1].

The purpose of this paper is to develop and implement the sensitivity
method for solid element structures using grid locations as the design vari-
ables inside MSC/NASTRAN. Using this approach, effects of moving the
surface of a specific portion of the solid element structure on a structural
response can be determined without constructing new finite element mod-
els. Specification of the design variables, which include both the grid labels
and the associated direction vector for grid movement, is not a trivial task.
Software is presented which assists the specification of design variables and
the display of the sensitivity results and the associated direction vectors on
the finite element model.

2 GRID SENSITIVITIES

Grid sensitivity analysis is the calculation of changes in the response of a
structure due to changing the finite element grid point locations. There are
two basic approaches to the calculation of sensitivity derivatives. The first
approach, known as implicit differentiation, is based on differentiation of
the discretized finite element system[2]. The other, which is based on the
variation of continuum equations, is known as the variational or material
derivative approach{3]. The method used in this paper is based on the
implicit differentiation. The basic theory underlying the displacement and
natural frequency sensitivity analyses is briefly explained in the follwing
sections.

2.1 Displacement sensitivities

The governing equilibrium equation for a structure subject to quasistatic
load is:

K(v)x = f(v) ' (1)

where v is the shape design variable vector of order s, K(v) is the symmetric
non-singular structural stiffness matrix of order n, f(v) is equivalent nodal
load vector of order n, z is nodal displacement vector of order n. The
design variables are movements of grid point locations along the chosen



directions. The order n corresponds to the degrees of freedom of the finite
element model and order s refers to the number of design variables in the
model.

Differentiation of equation (1) with respect to the design variables v;
yields:
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The right hand side of the equation is called pseudo-load vector since the
equation(2) resembles equation(1). In the absence of body forces, the ap-
plied load f is usually independent of the design variables. Thus we assume

—a%% to be zero. The remaining quantity on the right hand side of equation(2)

is obtained by multiplying _g_uK? by the displacement vector x. Equation (2)

can be solved by the same solution algorithm used for equation (1), taking
advantage of the fact that K is available in factored form from the solution
of equation (1). The number of pseudo-load vectors used in the sensitivity
calculation is s x ¢, where s is the number of design variables and ¢ the
number of applied load cases.

Equation (2) indicates that computation of the gradients f;’;’;“: requires
evaluation of gradients of the stiffness matrix and load vector with respect
to the design variable v;. In some special cases such as bar and memberane
structures, it is possible to seperate element stiffness matrices as products
of constant matrices and the parameter with respect to which the deriva-
tive is taken and makes the derivative computations simple. But, a general-
formulation is not available for derivatives with respect to the shape vari-
ables. Finite difference methods provide a practical approach to determine
shape derivatives of the stiffness matrix.

The finite difference is introduced by perturbing each design variable by
a small amount and regenerating the global stifness matrix which is then
used in a finite diffrence equation to determine the derivative of the global
stiffness matrix. For example, the first derivative of a stiffness matrix K(v;)
with respect to a design variable v; can be approximated with the central
difference method as:
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Where € is a small perturbation of the chosen grid location along the spec-
ified direction. The choice of the magnitude of the perturbation is crucial
for the accuarcy of the derivative. A large value of € produces large trun-
cation errors, while a small value of € may result in large round-off errors.
Careful selection of € allows the use of forward finite difference approxima-
tion which requires less computational effort as compared to the central
diffrence approximation. Liefooghe et al.[4] investigated the influence of
perturbation size € on the accuracy of the sensitivities.

The implementation of finite difference techniques is often much simpler
than the analytical techniques for obtaining the derivatives and largely
independent of the type of finite elements used in the analysis. The method
is particularly useful when the analysis program source code is not available,
which is the case in the commercial codes. The sensitivity calculation
using finite difference derivatives is often referred to as a ”semi-analytical”
method[5] or a quasi-analytical method[6].

2.2 Natural frequency sensitivities

Governing equation for the free vibration response of a structure is often
cast in the form

K(V)¢; = /\,‘M(V)(ﬁ,’ ’ (4)

where M(v) is the symmetric structural mass matrix of order n, A; is
the eigenvalue related to the natural frequency, and ¢; is the associated
eigenvector. Assuming that the mode shapes are normalized with respect
to the mass matrix M,

$iM¢; = 1 : (5)
¢ M¢; = 0 (6)

We can diffrentiate equation (4) with respect to design variable v; to
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After premultiplying by ¢JT and substituting equation (5) and (6), Equa-



tion (7) can be simplified to:
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%;Ki-and%vl‘% can again be evaluated using finite difference methods.

3 DESIGN MODEL

Preparation of the model, including the definition of the design variables,
is the crucial step in the sensitivity analysis. In grid sensitivity analysis,
the design variables are the locations of the FE nodes on the surface of the
structure. Since the sensitivity calculation invoves the differentiation of
the structural matrices K and M, the computation burden of the method
grows with the number of design variables. Further, the design changes
initially envisioned by the designer are in terms of changes in components,
not in grid locations, thus it is desirable to cast the design changes in terms
of one key measure, for example a radius, rather than multiple measures
associated with grid locations. Therefore it is useful to create a design
model with only a few design variables which describe the potential design
changes.

To this effect, the concept of control node is introduced. Control nodes
reduce the number of design variables and allow the use of meaningful
design parameters as design variables. For example, with proper geometric
linking of FE nodes to carefully chosen control nodes, the thickness of a
flange, the radius of a shaft, or the angle of a groove can be used as design
variables. Typical description of the design model then must include the
decomposition of the structure into a few regions of simple geometry called
design elements which define geometric linking between the movement of
the regions and the associated control nodes. The movements of the control
nodes are then thought of as the design variables. Thus the control nodes,
along with all their associated nodes, are perturbed to obtain the derivatives
of the global stiffness and mass matrices during the sensitivity analysis



3.1 GEOMETRIC LINKING

Geometric linking basically expresses the movement vector for the FE nodes
of a design element as a function of the control node movement, and the
linking equation depends upon the geometry of the design element. The
linking procedure is illustrated in Figure 1 for three common design ele-
ment types- cylindrical, angular, and parallel elements. Each element is
associated with a control node(design variable). Radius ’p’ of the cylin-
drical surface is the control node for the cylidrical element. The slope ’¢’
of the angular surface is the control node for the angular element. The
thickness ’t’ of the panel is the control node for the parallel element. The
movement vectors d for the FE nodes due to a perturbation € in the con-
trol node are shown for the three cases in the Figure 1. The control nodes
can be perturbed to obtain the derivatives of the global mass and stiffness
matrices with respect to the design variables.

3.2 DESIGN VARIABLE LINKING

Often it is unnecessary or even undesirable that each design element be
defined by unique design variables. Design variable linking combines two
or more design variables into single independent design variable. Thus a
single control node movement controls the movement of all the dependent
design elements. This feature is quite useful for constructing meaningful
design variables. For example, in Figure 2, the thickness of a panel is made
a design variable by linking the two parallel design elements on both the
sides. A change in the design variable causes the movement of the parallel
elements away/towards from each other.

3.3 SOFTWARE

Software has been developed to assist the model preparation and sensitivity
calculation/display tasks. The software altogether consists of 5 modules
which opearte interactively. The different modules of the software will be
discussed briefly here.



3.3.1 VARNODE

The VARNODE module consists of subprograms used to identify the nodes
associated with various design elements. The surface regions for the de-
sign elements can be either from the finite element model or from the
surface patches defined during the finite element mesh generation using
PDA/PATRAN(a commercial finite element pre-/post-processor from PDA
Engineering).

3.3.2 GLINK

The GLINK module establishes the geometric linking between the design
element FE nodes and the associated control node.

3.3.3 DLINK

The DLINK module provides design variable linking feature. It combines
the two or more design elements to form a single design variable as per the
user’s directives.

3.3.4 PERTURB

The PERTURB module generates the NASTRAN data files due to pertur-
bation in the control nodes. These data files are used to generate perturbed
global stiffness/mass matrices which are used to compute the derivatives.

3.3.5 PATGRSEN

The PATGRSEN module generates PATRAN results files from the grid sen-
sitivity data and design element nodes list for displaying the color-coded
plots of the structure showing the sensitivities of the various design ele-
ments. Different colors indicate different sensitivity values. This module
also generates results files to display the FE node movement vectors on the
finite element model.



4 IMPLEMENTATION

Using the concepts described in the previous sections, the overall sen31t1v1ty
analysis task may be segemented into the following steps.

1. Finite element analysis of the design for structural response- displace-
ments, natural frequencies etc.

2. Preparation of design model which includes the design variable defi-
nition v;.

3. Computation of and usmg finite difference method.

4. Computation of displacement and natural frequency sensitivities.

MSC/NASTRAN is used to determine the structural response, and gen-
erate the structural matrices for perturbed design variables. The sensitivity
computation method is incorporated into MSC/NASTRAN using DMAP
programs. Two independent DMAP programs are developed to compute
displacement and natural frequency sensitivities. The computation proce-
dure requires three types of NASTRAN runs:

¢ Analysisrun: Determines the structural response- displacements, nat-
ural frequencies, mode shapes, and saves necessary data blocks/matrices
for further use in sensitivity analysis.

o Matrix creation runs: Generate/save the structural matrices for per-
turbations in the design variables. Number of runs depend upon the
number of design variables.

e Sensitivity run: Generates the sensitivities using the independent
DMAP procedure.

NASTRAN'’s solution 61 is used for determining displacements due to
static loads and solution 63 for the natural frequencies and mode shapes.
DMAP alters are inserted into these solutions to save the necessary data
blocks and matrices for use in sensitivity calculations. In the matrix cre-
ation runs, similar alters are used with these solutions to generate/save
structural matrices for the perturbed design variables. New matrix gen-
eration runs are needed for each design variable. The efficiency of these
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runs can be improved by using the information created in the first run i.e.
USET table, GM table, EQEXIN table etc. With this information, some
operations can be bypassed when formulating the new structural matrices
for other design variable perturbations.

Figure 3 contains the DMAP statements necessary to implement the
displacement sensitivity calculations. The structural stiffness matrix, dis-
placement solution vector, and the other necessry data blocks from the
analysis run are retrieved using DBFETCH module. The stiffness matri-
ces for the perturbed design variables from the matrix creation runs are
retreived using INPUTT2 modules. The finite difference derivative of the
stiffness matrix with respect to design variable is calculated using ADD
modules. The perturbation ¢ is specified through a parameter card in bulk
data. Finally the displacement sensitivity is computed using MATMOD,
MPYAD, FBS, SDR1, and SDR2 modules. The sensitivity results OUGV1
are printed using OFP module. This process is implemented in two nested
do loops. The inner loop LOOPSUB repeats as many times as the number
of applied load cases. The outer loop LOOPVAR repeats as many times
as the number of design variables. The number of repetitions for these two
nested loops are set on the respective REPT modules.

Figure 4 contains the DMAP statements necessary for the natural fre-
quency sensitivity calculations. The strategy is similar to the displacement
sensitivity calculation. The structural mass and stiffness matrices, eigen-
value table, and eigenvector matrix from the analysis run are retrieved using
DBFETCH module. The pertubed structural matrices from the matrix cre-
ation runs are retrieved for a given design variable again using INPUTT?2
modules. Next, the derivatives of the mass and stiffness matrices are com-
puted using ADD modules. Finally, the sensitivity is computed using ADD
and SMPYAD modules, and the result DLAM is printed. The process is
repeated using LOOPVAR for all the design variables.

5 NUMERICAL EXAMPLES

Two example problems are presented which illustrate the capabilities of
the grid sensitivity computation methodology. The first is the eigenvalue
sensitivity analysis for a L-shaped bracket. The second example is the



Table 1: Eigenvalue sensitivities to changes in bracket thickness.

Design variable | Sensitivity
Variable 1 2.024
Variable 2 1.848
Variable 3 0.920
Variable 4 -0.036
Variable 5 -0.398
Variable 6 -0.500

displacement sensitivity analysis for a crankshaft of an automotive engine.

5.1 L-shaped Bracket

A _L-shaped bracket with one end fixed is considered here to demonstrate
the eigenvalue sensitivity capability. The bracket is made of phenolics,
and the dimensions are shown in Figure 5. The bracket is modelled using
64 nodes and 21 CHEXA elements. Figure 6 presents the finite element
model. The grid points on the upper edge of the bracket are constrained
in all degrees-of-freedom to model the fixed end condition. The model was
analyzed for eigenvalues and eigenvectors, and its fundamental eigenvalue
is 1.36346E+09(5877 Hz).

This example concerns the calculation of the sensitivity of this first
eigenvalue to the thickness of the bracket. To formulate the thickness design
variables ’t;’, the top surface of the bracket was divided into six parallel
design elements(Figure 7) with the control node movement direction normal
to the top surface. Geometric linking feature was used to link the control
node movement to the FE nodes. A perturbation of 0.01¢; was used to
compute the finite difference derivatives of mass and stiffness matrices.
The sensitiviies were computed for the six design variables, and presented
as ratio of % change in eigenvalue to % change in design variable in Table
1. The grids in the vicinity of the fixed end have the highest sensitivity and
those at the free end have the lowest sensitivity.
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Table 2: Displacement sensitivities to changes in crankshaft dimensions.

Design variable Sensitivity
Cheek thickness C1 0.014
Cheek thickness C2 0.696
Cheek thickness C3 1.057
Crankpin diameter P1 2.168

5.2 Crankshaft

Lateral stiffness is an important aspect of the crankshaft design. In this
example, the displacement sensitivity capability is used to determine the
lateral bending deflection sensitivity due to an end load of 10,000 1b. The
finite element model(Figure 8) has 9790 nodes and 8475 solid elements; the
material is nodular iron. The model was analyzed for displacements, and
the lateral displacement at the load point was found to be 8.618E-3 inches.

In this example we determine the lateral displacement sensitivity for the
load point due to changes in cheek thicknesses and crankpin diameter. The
design variables, cheek thicknesses and crankpin diameter, were constructed
using the geometric linking and design variable linking features. The cheek
thicknesses were formulated using the parallel design elements with control
node movement direction parallel to the crankshat axis of rotation, and
the crankpin diamter variable was formulated using a cylindrical design
element. All the crankpins were constrained to have a single diameter
value. All the pin diameter variables were combined into a single design
variable using design variable linking. A perturbation of 0.01v; was used
to compute the finite difference derivatives. The construction of cheek
thickness and pin diameter variables are shown in Figure 9 and Figure 10
respectively. The sensitivities were computed for the four design variables.
Table 2 presents the ratio of % change in lateral displacement to % change
in design variable. ‘
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6 CONCLUDING REMARKS

This paper describes a method of obtaining the shape design sensitivity
information using MSC/NASTRAN. Geometric linking and design variable
linking concepts provided the capability to construct meaningful design
variables out of finite element nodes. Software was presented to assist the
design variable formulation, and a DMAP program is developed to compute
the sensitivities. The utility of the methodology was illustrated through
examples.
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GEOMETRIC LINKING

A. CYLINDRICAL DESIGN ELEMENT
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TWO PARALLEL DESIGN ELEMENTS ARE COMBINED
TO FORM A THICKNESS DESIGN VARIABLE
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MSC/NASTRAN IMPLEMENTATION OF DISPLACEMENT SENSITIVITY ANALYSIS
(VERSION 65)

BEGIN $

PARAM //NOP/V,N,ON1=1 $

PARAM //NOP/V,N,OP2UN=15 §

DBFETCH /LLL, KLL ULV,KFS,KSS/V,Y,SOLID///DBSET2 $
DBFETCH /USET CASEDR EQEXINS,,N Y,SOLID//DBSET2 $
PARAM //NOP/V,N,SUBCASE=1 $

PARAM //NOP/V,N,COUNT=1 $

PARAM //NOP/V,N,DES_VAR=1 $

$

LABEL LOOPVAR $

PARAM //ADD/V,N,O0P2UN/V,N,ON1/V,N,OP2UN $
INPUTT2 /KX1,,,,/0/V,N,OP2UN $

PARAM //ADD/V,N, OP2UN/V N,ON1/V,N,OP2UN $
INPUTT2 /KX2,,,,/0/V N, OP2UN $

PARAMR //DIV/V,N, FACT/O 5/V,Y,EPSIL =0.01 $
PARAMR //COMPLEX/N,N,FACT/O.N,N,ALPH $

ADD KX1,KX2/DK1/(1.0,0.0)/(-1.0,0.0) $

ADD DK1,/DKV1/ALPH $§

$

LABEL LOOPSUB $

PRTPARM //0/C,N,DES_VAR $

PRTPARM //0/C,N,SUBCASE $

MATMOD ULV,,,,/U,/1/V,N,SUBCASE $

PARAM /ADD/V,N,SUBCASE/V,N,ON1/V,N,SUBCASE $
MPYAD DKV1,U,/Y/1///2$

FBSLLL,Y/UV/$

SDR1 USET,,Uv,,,,,,KFS,KSS,/UGVS,,/1/C,N,STATICS $
SDR2 CASEDR,,,,EQEXINS,,.,,,,UGVS,,/,,OUGV1,,,/C,N,STATICS/
S,N,NOSORT2/V,Y,NOCOMPS=+1$

OFP OUGV1// $

PARAM //SUB/V,N,COUNT/V,N,COUNT/V,N,ON1 $
COND OUT, COUNT $

REPT LOOPSUB,S $

$

LABEL OUT $

PARAM //ADD/V,N,DES_VAR/V,N,DES_VAR/V,N,ON1 $
SETVAL //V,N,SUBCASE/1$

SETVAL //V,N,COUNT/1$

REPT LOOPVAR,2 $

$

END $

CEND $

BEGIN BULK

PARAM,EPSIL,0.01

ENDDATA

Figure 3



MSC/NASTRAN IMPLEMENTATION OF EIGENVALUE SENSITIVITY ANALYSIS

(VERSION 65)

BEGIN $

DBFETCH /MXX,KXX,LAMA,PHIX,/V,Y,SOLID//DBSET2 $
LAMX, ,LAMA/LMAT/-1 $

MATMOD PHIX,,,,,/U,/1/V,Y,COL $

PARAML LMAT//DMI//V,Y,COL/V,N,EVL $
PARAM /NOP/V,N,ON1=1 $

PARAM //NOP/V,N,OP2UN=15 $

$

LABEL LOOPVAR $

PARAM //ADD/V,N,OP2UN/V,N,ON1/V,N,OP2UN $
INPUTT2 /MX1,KX1,,,/0/V,N,OP2UN $

PARAM //ADD/V,N,OP2UN/V,N,ON1/V,N,OP2UN $
INPUTT2 /MX2,KX2,,,/0/V,N,OP2UN $

PARAMR //DIV/V,N,FACT/0.5/V,Y,EPSIL = 0.01 $
PARAMR //COMPLEX//V,N,FACT/0./V,N,ALPH $
ADD KX1,KX2/DK1/(1.0,0.0)/(-1.0,0.0) $

ADD DK1,/DKV1/ALPH $

ADD MX1,MX2/DM1/(1.0,0.0)/(-1.0,0.0) $

ADD DM1,/DMV1/ALPH $

PARAMR //MPY/V,N,FAC/-1./V,N,EVL $
PARAMR //COMPLEX//V,N,FAC/0./V,N,LAMD $
ADD DKV1,DMV1/MID/(1.0,0.0/LAMD $
SMPYAD U,MID,U,,,/TOT/3////2////6 $

PARAML TOT/DMI/1/1/V,N,DLAM $

PRTPARM //0/C,N,DLAM $

REPT LOOPVAR,6 $

$

END $

CEND $

BEGIN BULK

PARAM,COL,1

PARAM,EPSIL,0.01

ENDDATA

Figure 4



g 9inBid , - G 9inbid4

(N4
aaxid

wd
] P
-

LANOVEA—1 AHL 40 [HAOW INAWT T4 ALINLJ SNOISNANIQ LINOVId—1




. einbid

*HOVAENS 401 FHL
OL TVRYON (RIVAINO dHL 9NOTY
S[ NOILJIYIA INIWJAOW JdON

9% INAWJ'Td NOIS3d ,
C# INIWITA NOISHC- .
v# INGNIT3 NOI1SId

e¢ INIWITI NOISIA [

Z# INdWJTd NOIS3d

I INGWITd NOISIA TITIVIVd

SSANNOITHL 1IN0V ¥0d STTHVIAVA NOISHU 40 NOLLONALSNO)




g 81nb14

(T JJINVIA NId ? (€2°22°T2) SASSANMDTHL MATH) :STTAVIAVA NOISAd

JTIVIAVA NOISIa NI FONVHO %

= ALIAILISNGS NOILJYAT149d ONIANI4
NOILDAT4dd VALY NI FONVHD %

S130ddNS X L

NAARRE

|
81
1
)

i
bl
=
.
|
]

40404 u {

AN
|

u;
f
I

!

LAVHSINVYO INIONT JAILONOINV NV JO TIAOW INIWT'1d ALINIA




6 einbi4

‘SIXV-1
JAILISOd STAVAOL
ONIINIOd ¥0103A

INIWJAON HLIA INIWTH
NOISId TTIVIVd 1491

"SIXV-Z dALLVYEN
SMRAVAOL INIINIOd ¥OLJdA

INAWFAON HLIA INdW3T3
NOISdd TATIVIVd IHOIY

A
Qb: AL

h //,

A %b?%,

AT
:- ’/,
B

(€024 MNIFHD ¥Od4 d19VI¥VA NOISTA SSANOLIHL 0 NOILONYLSNOD




=
&
=4
o
=
z
f—
)
Z
—
%
=~
o -
c
]
Z
%
-
z
1
J—t
72
4]
=
43
=
=
e
rd
[}
=
3
x
%
Z
<
St

CRANKPIN OUTSIDE SURFACFE
IS MODELLED USING

CYLINDRICAL DESIGN ELFMENT.

NODE MOYEMENT VECTORS

ARE IN THE RADIAL DIRECTION

Figure 10




