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Abstract

Formulation and computer algorithm for FE model refinement based on
correlation with frequency response test results have been developed. The
proposed approach derives from the direct frequency response formulation

for FE analysis of dynamic systems. The computer algorithm has been

effectively implemented in MSC/NASTRAN's DMAP language.




Introduction

FE models of structures have been widely used in aerospace industry for predicting
dynamic responses under various 'flight' conditions. Instantaneous prediction of dynamic
responses is an important input for automated flight control systems. It is clear that an
effective control system requires precise prediction of dynamic responses of the structure
under dynamic loads. Therefore, there is a need to develop an analytic capability for
refining and validating FE models in order to achieve acceptable correlation between the
predicted and the actual forced responses of the structures.

Conventionally, this process has been mostly tackled by an indirect approach [1,2]
which involves the refinement of stiffness and mass matrices (instead the 'FE model’)
based on correlation of modal data. However, this kind of approach may achieve a limited
success with incomplete modal data, as is always the case, and result in an uncertain
answer to the problem with regard to the physical changes of the structure that an active
control system is interested. In addition, the use of modal data for correlation involves two
fundamental drawbacks. One as mentioned a priori is that complete modal data of the
actual system is not available with today's dynamic testing technology which is likely to
invalidate the method. Another drawback is due to the fact that actual modal properties of
the structure are usually identified by a curve fitting process around peaks of frequency
response curves at all available measurement points and dof [3]. This leads to an
uncertainty in the quality of the modal data resulted as it is affected by many factors such as
the method of curve fitting, structural damping, mode identification technique, and so on.

The paper presents an approach that is designed to circumvent the problems
discussed. First, the correlation data for the structures are the frequency responses under
known dynamic excitations. In doing so, the measured response data used could be more
reliable than curve-fitted natural modes and, on the other hand, the correlation results
should also satisfy the objectives of the conventional modal correlation. Second,
correlations to the physical parameters of the FE models are directly calculated and can be a
set of useful and meaningful data for control systems. The FE model refinement method is
an iteration process that minimizes the difference between the predicted and the measured
response of the structure. Nonlinear least squares method [4] is employed where the
measured response is expanded as a Taylor series at each iteration on the assumption of
local linearity. That is, at each iteration, FE analysis result and the associated design
sensitivities of the response with respect to design variables are required for the updated FE
model of the structure. Each design variable can be designated to link with one or a group
of property value entries in the FE model.

However, there is a severe challenge in numerical difficulty when frequency
response data.are used directly for correlation. This is due to the fact that the order of
magnitude in difference between FE and real response can be very large and may cause the
process to diverge or to result in unreasonable values. Therefore, this paper provides some
suggestions to overcome the difficulty and presents the experience gained in implementing
the approach into MSC/NASTRAN's DMAP language [5].

Direct Frequency Response Formulation

In frequency response analysis, the applied forces are harmonic and periodic with
constant frequency, f = w/2r, at different points. Assuming the forced response of the
structure is also harmonic with the same frequency, we can write down the dynamic
response equation "directly"” as




(-?M] +ia[B] +[K]) {u} = (P) (1)
where [M], [B], and [K] are the structural mass, damping, and stiffness matrices,
respectively. The displacement vector {u} is the response corresponds to the constant

force vector with the frequency w. Both {u} and {P} may be complex, e.g.,
{u} = {u}r+ifuks ()

Design Sensitivity Analysis

The dynamic equation for a system under constant frequency dynamic forces can be
expressed as follows:
[D] {u) = {f} 3)

where, for example,

[D] = (-02[M] +i0[C] + (1+ig)[K])
and g is the global structural damping coefficient.

For the case of constant damping and constant {f}, the first derivative of the
dynamic equation with respect to design variable x yields:
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Correlation Methodology

For a constant force vector, the experimental results can be expressed using the first
order Taylor's series:

du
{ue} ={ua} + ‘é‘f
where {ue} and {uy} represent the experimental and analysis displacement vectors,

respectively. {€} accounts for the errors involved. For clarity, only a single design
variable, x, is used here and in the following derivation of equations.

(e} = (ue) - {ua) - %‘;—a}Ax

Then, by applying the least squares method, we want to
minimize ® = {e)Te) ©9)

Ax + {€}

0

From above, we obtain
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where (€} is the conjugate of {€}




The necessary condition for the minimum of ® is:

oy, \T[du, aua aua _{[9ua au,, _
( ox | |dx } {A ( ))_O (10)
where
{Au} = {ue) - {ua) (11)
Removing the imaginary terms, Eq.(10) can be rewritten as:
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This solution can be easily expanded for the multiple design variables, {x}, cases.
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then
{ax} = (TR (T AT (14)

Computational Algorithm
The iterating procedure of the method can be stated as follows:
(1) Start with an initial FE model. Set iteration counter k=0
(2) Perform frequency response analysis to determine {ua}y
(3) Compute design sensitivity matrix [T]y and {Au}y

(4) Set
(Axher = (TR (T AT R (15)
(5) Update FE model.
(6) Check for the convergence criterion.
a. stop the procedure if it is met.
b. continue the procedure if it is not met.

(7) Set k=k+1 and go to step (2).

Numerical Scaling

~ For the practical correlation with forced response data, it frequently involves
dealing with a large number of response vectors corresponding to various excitation




frequencies. It is the nature of the vibration in a structure that the response level varies with
excitation frequencies. It is possible that the magnitudes of the responses, €.g., H{u(w)}l,
for different frequencies may differ by a large extent. This, sometimes, causes a severe
numerical instability problem in the correlation process.

In order to overcome the numerical difficulties involved, it is necessary to introduce
numerical scaling for all the response vectors used in the correlation process. Let [U] be

matrix with each column being a response vector of frequency o, i.e., {u(w)} and,
likewise, [Ue] and [Ua] are matrices associated with test and analysis vectors, respectively.
Since [Ue] stays constant throughout the entire process it is reasonable to first normalize
[Ue] such that each column of [Ue] is unitary. This means that the normalized [Ue] is

[T) =[udlr] (16)

and

[1] = Diag(UJTTD (17)
is a diagonal matrix with each diagonal term associates with the magnitude of the
corresponding column in [Ue]. Similarly, [Ua] should be normalized as

DABALN (18)

with a constant scaling matrix [I'] for the entire process.
Programming Aspects

The computer program for calculating design sensitivities and the design changes
for the forced response test-analysis correlation is written in MSC/NASTRAN's DMAP
language. The program has been developed based on the available modules existing in the
version 65 of MSC/NASTRAN.

Design Sensitivities

The determination of design sensitivities for forced response follows the same approach as
those design sensitivity analysis solution sequences provided by MSC. This means that the
design sensitivity information is determined partially in an approximated sense. For
instance, Eq.(5) is approximated by

{5—“} = {D]'IPD-}{U} (19)
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where {8u/6x} approximates {du/dx} with 8x being a small perturbation of x. It should be
noted that the only approximated item on the right hand side of Eq.(19) is

[%le] = -81: (-O){SM] + (l+ig)[8K]) (20)
where [8M] and [8K] are perturbation of matrices [M] and [K], respectively, due to 8x.

To directly compute and store [M] and [8K] can be an inefficient (or even be
restricted by the available memory space limitation) way to begin in calculating the
sensitivities with respect to multi-variables, i.e., {x}. The approach adopted in
MSC/NASTRAN's DSVG1 module is effective for most applications. This approach
computes directly the resultant changes in the grid point equilibrium as [M]{u} and
[6K]{u} at element level and then assembles to g-set vectors.

_ At the first glance of Eq.(19), it seems to involve merely the solution of linear
equations. However, the fact is far more complicated than the first impression. Firstly, the
matrix [D] is a function of the excitation frequency w; it needs to be decomposed as many




time as there are w's. Secondly, since all the terms in Eq.(19) are, in general, complex and
the equation may not be solved efficiently by conventional methods used in handling real
value problems. Fortunately, since Eq.(19) shares almost the same format as that of the
original equation for solving forced response, i. €., Eq.(3), it can be solved in a similar
manner as the solution for forced response analysis. The functional module FRRD1 used
in solution sequence 68 of MSC/NASTRAN is the key module in solving frequency
response problem of Eq.(3). With a careful arrangement of all the 'force vectors', i.e.,
[6D]{u}, with respect to excitation frequencies, FRRD1 module can be used to solve for
{8u} in Eq.(19) without any modification. This approach has shown to achieve a much
better efficiency than the conventional methods do.

The Least Squares Solution

After all the sensitivity information has been determined, we rearrange it into the
appropriate format to fit the least squares equation (Eq.(14)) for solving the design
changes. The sensitivity matrix [T] in Eq.(14) is so arranged that its columns correspond

to design variables and its rows correspond to response dof's with various excitation
frequencies.

Since the solution of Eq.(14), {Ax}, is real, it is logical to alter the originally
complex equation into a real value equation. There are many reasonable ways to achieve
this. However, we found that Eq.(14) to be the best among all the possible approaches.
Having turned the least squares equation into real values, the remaining tasks in the
correlation process can be handled in exactly the same way as we do for real valued data,
e.g., natural frequencies and mode shapes.

Numerical Example

A simple cantilever beam was used for demonstration purpose. The finite element
model consists of 5 beam elements and lumped mass elements at nodes. Principal area
moments of inertia in the vertical bending plane of the three close-to-wall elements, i.e., I1,
I, I3, and two close-to-tip masses, i.e, M5 and Mg, were designated as design variables.
There were a total of five design variables and their baseline values as well as the perturbed
values for generating mock test data are shown in Fig.1.

Assuming a frequency-dependent vertical force was applied at the tip of the beam.
The magnitudes of vertical displacements at all grid points corresponding to ten selected
excitation frequencies were used as correlation data. These ten excitation frequencies are:
14., 17., 80., 88., 189., 197., 296., 304., 377., and 385. Hz.

For the large perturbation in design variables (-40% from their baseline values), the
correlation algorithm performed well and converged to the target result for most cases.
Fig.2 shows an overlaid frequency response plot for curves corresponding to beam-tip
responses generated by FE models of the baseline, after 2nd iteration, after 4th iteration,
and the target. By a visual inspection, a typical frequency response curve converged to the
corresponding target curve at or around the 8th iteration. Table 1 shows the natural
frequencies of the baseline and target models.

Since, numerically, the discrepancies between the responses of the baseline and
target models are very large, it becomes necessary to impose step size constraints for every
design change at the end of every iteration. A test was performed with various constraint
values on step sizes to investigate their effect on convergence rate. Table 2 lists some of
the iteration results with the application of three different step size limits in every iteration.
It should be observed that all cases converged to the target values within 15 iterations and




the 15% bound on the fractional change of every design variable achieved a better rate of
convergence than the others do. Table 3 shows the results for another test case where

every condition stayed the same as before except that all target response values were

rounded off to two significant digits as input to the program through DMI cards. Itis
interesting to note that for at least one step size bound (20%) the result did not converge.
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Fig.1. Baseline and Perturbed Design Variables

Table 1.
Natural Frequencies (Hz) of Baseline and Target Models
MODE NO. 1 2 3 4 5
BASELINE I'_—15.6 — 83.7 | 103.1 300.2 380.6
TARGET J 14.7 73.1 177.2 257.9 354.3
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Table 2.
Fractional Design Changes with Accurate Target Response Data

ITERATION | DV FRACTIONAL CHANGE
NO. NO. ND 5% BOUND 10% BOUND
1 -0.4623 -0.4122 -0.4094
2 -0.3047 -0.3946 -0.2580
10 3 -0.3732 -0.3943 -0.3720
4 -0.5044 -0.4314 -0.5312
5 -0.3875 -0.4017 -0.3165
1 -0.4008 -0.40 -0.3995
2 -0.3998 -0.3999 -0.4002
15 3 -0.3997 -0.4002 -0.3999
4 -0.3999 -0.4000 -0.4002
5 -0.4001 -0.3998 -0.3999
Table 3.
Fractional Design Changes with Rounding Off Target Response Data
ITERATION | DV FRACTIONAL CHANGE
NO. NO. 20 %=B_2UND 1§L% BOUND 10% BOUND
1 -0.7492 ~ -0.4111 -0.4113
2 +1.2015 -0.3955 -0.2438
10 3 -0.2969 -0.3943 -0.3750
4 -0.7752 -0.4298 -0.5312
5 -0.5347 -0.4016 -0.3239
1 -0.751 1 -0.3097 -0.4005
2 +1.4347 -0.4001 -0.4002
15 3 -0.1928 -0.4003 -0.4002
4 -0.4406 -0.3997 -0.4002
5 -0.0131 -0.3994 -0.3999

Concluding Remarks

A procedure to refine FE model based on test/analysis correlation with forced
response data has been developed and implemented in MSC/NASTRAN's DMAP
language. The effectiveness of the procedure has been demonstrated with a test problem
where the procedure correctly identified all the predefined target values for all design
parameters. The convergence rate was found to be reasonable. It can be observed from
the results presented that the response curve converges to the target in less than eight
iterations and a comparable rate for that of most design variables.




Acknowledgements

The authors gratefully acknowledge the partial support of this effort from NASA
Langley Research Center and Sikorsky Aircraft Corporation.
References

[1] Berman, A, and Flannelly, W.G. "Theory of Incomplete Models of Dynamics
Structures,” AIAA Journal, Vol. 9, No. 8, pp. 1481-1487, 1971.

[2] Chen, S.Y. and Fuh J.S., "Application of the Generalized Inverse in Structural
System Identification,” AIAA Journal, Vol. 22, No. 12, pp. 1827-1828, 1984.

[3] Ewins, D.J., Modal Testing: Theory and Practice, research Studies Press, 1984.

[4] Ting, T. and Ojalvo, 1.U., "Dynamic Structural Correlation via Nonlinear
Programming Techniques," J. of Finite Elements in Analysis and Design, Vol. 5, pp.
247-256, 1989.

[51 "MSC/NASTRAN User's Manual", Version 65, Volume II, The MacNeal
Schwendler Corporation, Los Angeles, CA, 1985.

10




