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ABSTRACT

The MacNeal-Schwendler Corporation has been researching parallel
computational methods and evaluating their applicability to its products since
1985. Limited parallelism has been offered in various MSC/NASTRAN
products, mainly on supercomputers, since 1987. Presently, there are 5 major
computer platforms where shared memory parallel execution is supported.

The paper will discuss some of the technical details of the shared memory
parallel methodology and explore the limitations of parallel speedup on the
current parallel environments using MSC/NASTRAN. Results of the leading
parallel applications will be shown on a moderate number of processors, in
specific a 4 fold parallel speedup on 16 CPUs analyzing a large automobile
industry job will be demonstrated.

The results of investigations on using a distributed memory methodology
(applied in the massively parallel computers) will also be discussed. The main
strategic aspect of Lagrange multiplier based solution sequences and the topic
of supermodules will be briefly addressed.



Introduction

The introduction of parallel processor supercomputers in the 1980’s provided a
possibility to increase application software performance. Some applications that
are inherently parallel in nature, - such as image processing, atmospheric
modeling and seismic processing, - were able to demonstrate significant
performance improvements. On the other hand, the finite element application
software area was not able to reach significant speedup. Sections 1 and 2 discuss
the reasons for this.

The main distinction between different parallel processing computers is the
organization of memory. The shared memory paradigm, which first appeared in
the parallel supercomputers, has provided an easy application of parallelism to
finite element software, at least in the numerical methods area. Techniques
applied in this area, as well as MSC/NASTRAN results on shared memory
parallel computers, is the topic of Section 3.

The distributed memory idea came along with the so-called hypercube
supercomputers. These computers, which were first intended as inexpensive
supercomputers, employed the technically simple distributed memory solutions;
however, a significant price was paid in developing software. The cost of
moving data around or even replicating information led to a gradual
disappearance of the true hypercubes. Nevertheless, the distributed memory
idea still serves as the technically feasible solution for computers with a large
number of processors, the massively parallel computers. In Section 4, MSC’s
efforts and plans in this area are documented.



1. General Limits of Parallel Processing

An important result of the 1970’s is the principle, which later became known as
Amdahl’s law, that the performance of an application on a supercomputer
having two different execution modes (i.e., vector and scalar) is determined by
the percentage of the slower portion. If a code, for instance, is 50 percent vector
and 50 percent scalar, then the maximum improvement by vectorized execution
can not exceed twofold, even if the vector operations are infinitely faster than the
scalar operations. This results in a discouraging, hyperbolically decreasing
speedup curve as a function of the serial percentage, shown in Figure 1.
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Figure 1.

The curve is described by the following mathematical expression:
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where:
SP = Speedup

R = Vector/Scalar Speed Ratio

S = Scalar %



It was later recognized that Amdahl’s law unfortunately also applies to parallel
processing. If 90 percent of a code can be executed in parallel and 10 percent
remains serial, the maximum speedup, even with infinite number of processors,
can only be tenfold. A desperate effort to overcome this limitation resulted in the
idea of scalability and the scaled speedup curve calculated by projecting a
parallely executed program’s performance back to the serial execution. This
gives a more sympathetic, linearly decreasing speedup curve as function of the
serial percentage shown in Figure 2. Some in the industry debated the validity of
this approach, nevertheless it makes parallel processing more attractive.
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The curve is described by:
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where:

SP = Speedup %

P = Number of Processors

S = Serial %

Unfortunately both curves imply that the speedup by vector or parallel
processing is limited by the scalar or serial portion of the application software.



2. Limits of Parallel Processing in Finite Element Software

In order to understand the limits of parallel processing in finite element software,
let us assume two simple uniformly meshed 2D and 3D models, a plate and a
cube respectively. The cost associated with finite element analysis of these
structures is dependent upon the degrees of freedom (DOF), i.e., the size of the
finite element matrices and the average bandwidth.

In the case of a 2D n x n mesh (having n elements in one direction) the number of
DOFs is O(n2) while the bandwidth is of (O)n. The corresponding numbers for a
3D mesh (n x nx n) are O(n3) and O(n2), respectively.

Let us assume that the serial time of a finite element analysis is proportional to
the number of DOFs (N) and to a data move time (P):

T¢=N-P (3)

where s stands for serial. The parallelizable (potentially parallel) time is
proportional to the number of DOFs and the bandwidth (B), as well as to a
numerical kernel time (M):
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where p stands for parallel. The times resulting from substituting the different N
and B values for 2D and 3D problems are in the following table:

Serial Parallel
2D Ts,2D =n?.P Tp,2D=103.M
Table 1.

A maximum speedup is calculated as the ratio of the parallel time to the serial
time. This is based on Amdahl’s law assuming that the parallel cost is eliminated
in the parallel run and the serial cost is negligible in the serial run.



Using the formulae from Table 1 we get:
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where * is 7/3 for 3D and 3/2 for 2D problems. This formula establishes a
scalability rule of parallel finite element runs as follows: the speedup on a

problem k times the size increases only by k 3/2 for 2D and k 7/3 for 3D meshes.
For example, the speedup of a 2D problem twice the size of a baseline run
increases only by about 2.8.

3. Shared Memory Parallel Processing in MSC/NASTRAN

Shared memory parallelization has been researched at MSC since 1985. We have
had production versions of MSC/NASTRAN running in parallel since 1987,
starting with Version 65. This shared memory paradigm is currently supported
on certain CRAY, IBM, CONVEX, DEC and SGI computers.

In these computers, parallelism is exploited in MSC/NASTRAN numerical
modules only. Currently, the parallel modules are: DCMP, FBS, MPYAD and
REIGL. Several other modules having calls into these four modules could also
benefit from parallel execution. The methods of invoking parallel execution are
described in Reference 1 and the technical details of some of the algorithms are
discussed in Reference 2.

The main solution sequences where parallel execution may help the performance
are the various static and normal modes solutions, however, there is no
engineering reason to restrict parallel methods to these solution types. The fact
that only those solutions are using parallelism is merely due to implementation
priorities.

We demonstrate the possible parallel processing speedup with a model of a car
body of about one million degrees of freedom. The linear static analysis of this
job was executed with MSC/NASTRAN Version 67.5 on a CRAY-YMP
computer. The memory used was 75 million words and about 6 gigabytes of disk
space was required for the execution.



The amount of I/O was over 16 gigabytes. Only the decomposition operation

was executed in parallel. The timing data of the run is shown in Table 2.

# of CPUs Elapsed Time CPU Seconds 1/0O Seconds
(min:sec)
1 106:17 5,830.5 2,371.2
2 86:06 6,037.5 2,371.2
4 74:50 6,117.5 2,371.2
Table 2.

From Table 2 it is easy to see that we have a decent speedup of about 40% in
elapsed time. The really good news is that the CPU overhead for parallel
processing is below 5%. Considering all the limitations discussed in the earlier
sections, these results are as good as one can get in a commercial finite element
code using module level prallelism only. Finally there is no change in the I/O
seconds, which is another important fact, demonstrating that we did not increase
the amount of data created or moved during the run.

A further detailed analysis of this one million degree of freedom problem
showed about 6% of the run is inherently serial. Approximately 84% is
“potentially” parallel. That means that parallel execution is feasible for 84% of
the work but has not necessarily been implemented in MSC/NASTRAN. The
remaining 10% is due to overhead type operations related to database
management and executive system tasks.

Of course, the above results change depending on the actual model, number of
subcases, load vectors or eigenvectors requested. Nevertheless, the main
conclusion is that if everything possible is made parallel in MSC/NASTRAN the
maximum speedup of a huge job like this cannot exceed about sixfold.

Another large (several hundred thousand degrees of freedom) automobile
industry job, ran on a 16 CPU CRAY C90, using all the currently available
parallel modules in MSC/NASTRAN, was used to verify that fact.



Table 3 shows the details of this run.

# of CPUs | Elapsed Seconds CPU Seconds Speedup
1 3,441 3,043 -
2 2,179 3,209 1.57
4 1,366 3,250 2.52
8 1,054 3,270 3.26
16 859 3,319 4.01
Table 3.

This table shows that with our current code we can reach a speedup of about a
factor of 4 by using 16 CPUs. The parallel overhead due to the larger number of
CPUs is about 9%. That is actually an indication that the number of CPUs
applied has approached its feasible limit. On the other hand we can also see that
within the current small number of parallel modules we were able to reach a
speedup of 4 out of the “ultimate” limit of 6 calculated earlier based on the
million degrees of freedom problem.

4, MSC/NASTRAN on Distributed Memory Machines

We have been investigating the distributed memory or massively parallel
machines since 1990. One of the conditions we had was that we would like to
maintain the current MSC/NASTRAN framework as much as possible. We also
identified the fact that increased pre- and post-processor support is needed. The
6% inherently serial time of the one million degrees of freedom run analyzed
earlier was mainly in the beginning and at the end of the run in operations that
can be moved into an interactive environment.

The possible parallel speedup we hope for is about 10-15 fold in the distributed
memory version applying 16-64 CPUs. There are two main strategic aspects of
the distributed memory version: one is the application of a Lagrange multiplier
method for constraint processing, and the other one is a supermodule approach.

The Lagrange multiplier approach for constraint processing is well known in the
industry. Its main advantage is to eliminate some of the constraint elimination
operations. These operations, in the SCE1, MCE1 and MCE2 modules, have high
serial content and therefore inhibiters of further parallel speedup. In this method
we create an augmented system of equations, in a sense handling the constraints
as elements. DMAP alters for this method were delivered to users with
MSC/NASTRAN Version 67.5 and will gradually migrate into mainstream
solution sequences.



Another technical aspect of the distributed version is a so-called supermodule
approach. Besides moving some pre and post-solution operations into the pre-
and postprocessor product, we plan to combine several modules into
supermodules. This will minimize sequential operations and data transfer, both
crucial in parallel processing. The price of this will be paid in some restrictions
in user interactions, such as alters and restarts.

The manpower and cost requirements of the distributed parallel version of
MSC/NASTRAN are much higher than the cost associated with shared memory
parallelism. Due to this, it is immature to say which version of MSC/NASTRAN
will carry this capability.

Conclusion

We believe we have an adequate capability to take advantage of shared memory
parallelism in current MSC/NASTRAN versions. Considering the theoretical
limitations, the results demonstrated in the paper are good; and we will continue
work in this area.

We found that it is not worth pursuing much more in the shared memory
parallel environment because the cost of reaching the remaining 1/3 of possible
parallel speedup is not proportional to the gain. There is more to be gained by a
distributed memory version of the code.

We have established a corporate strategy to run on distributed memory
(massively parallel) computers in the future. Preliminary development work is
already underway.

The main goal of our effort in both areas is to provide parallel capabilities
without limiting our leading characteristics in overall performance, numerical
accuracy or reliability. In order to achieve this goal we are continuing to research
on advanced concepts related to these topics.
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