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ABSTRACT

In static analysis, the calculation of minimum margins of safety using yielding
(Von Mises,...) or failure theories (instability for honeycomb structure,...) requires all
stress components (3D case : 0,,,0,,,0,,7,,,T,»T,, ; both magnitude and sign) for a
specific element. In frequency response analysis, the stress component magnitude and
sign are function of the reference phase angle and the phase angle of each of the
various stress components. When the phase angle difference between the various
stress components is almost equal to 0 or 180 degrees, the calculation of the
minimum margin of safety is simple. However, in the general case, the minimum
margin of safety will be dependant upon both the reference phase angle as well as the
phase angle of each various stress components. This paper describes a method used
for the calculation of the exact minimum margin of safety for the general case. For
the 2D and 1D elements, the exact minimum margin of safety is evaluated at the
lower and upper fibers of the element where the flexural stress is maximum and the
transverse shear stress contribution is equal to zero. The calculation of the exact
minimum margin of safety is done by a general stress processor using the
MSC/NASTRAN OUTPUT?2 file.



1.0 INTRODUCTION

The final dimensionning of aerospace structure components is based on
detailed stress analysis. It is important to precisely calculate the margin of safety
using various yielding, failure or instability criteria. The precise calculation of the
margin of safety for complicated stress fields using these criteria requires all stress
components (3D case : O,00055: 0,00 Ty T Ty, 5 MAgnitude and sign) for a specific
element.

In static analysis, all stress components (0,,,0,,,0,,,T,;,Ty,%,,), Principal stresses
(0,,0,,05) and the equivalent stress (o, Von Mises) are available to the analyst from
a finite element program like MSC/NASTRAN. In this case, the calculation of the
margins of safety for ductile materials is straightforward because the equivalent
stress using the Von Mises theory is provided by the FEM software. Unfortunately,
the same calculation for a honeycomb panel using a local instability failure criteria,
such as local crippling requires the use of all stress components and the effort
required to compute the margins of safety for a complex structure is significant.

In frequency response analysis, all stress components are complex numbers.
A particular stress component may be expressed as follows:

0, () =| 0| -sin(wt+p) (1
where o, (t) : normal stress component in x direction
ol : normal stress magnitude for o,
B : normal stress phase angle for 6,
o : excitation frequency (rad/sec)
t : time
ot reference phase angle

Typically, all the stress components will have different phase angles. When the
phase angle difference between the various stress components is almost equal to 0 or
180 degrees, a good approximation can be obtained by simply using a consistent sign
convention. When the phase angle difference between the various stress components
is significantly different from O or 180 degrees (e.g excitation frequency in the
viscinity of closely spaced modes), the reference angle (wt) for which the margin of
safety will be minimum is difficult to evaluate.
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1.0 INTRODUCTION (...)

The aim of this paper is to present a technique for the calculation of the
minimum margin of safety using stress results obtained from either a static or a
frequency response analysis.

2.0 PROBLEM DEFINITION

The best way to define and to illustrate the problem is through two simple
examples using a stress field obtained from a 2D element (e.g. CTRIA3 or CQUAD4)
and the Von Mises criterion.

2.1 Examplenol

In this example the phase angle difference for the various stress components
is almost 0 or 180 degrees. The following figure shows the three stress components
with respect to a given the reference phase angle.

lo.!
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FIGURE 1 2D stress component vectors with respect to the reference phase angle (wt)

From this figure, the analyst may use one of the following four options for the
calculation of the margin of safety:

i) To project 6, and g, vectors on 1,, vector,

i) To project o,, and 7,, vectors on o, vector,

iii)  To project Ty and o,, vectors on o,, vector,

iv)  To use directly the value of lcxx | O'yy| and |‘ny | and to assign
a positive sign to o,, and t,, and a negative sign to lcyy l.

The table on the following page summarizes the results obtained from these
four options and compares them to the exact solution.



2.0 PROBLEM DEFINITION (...)

CASE | DESCRIPTION ‘[ Ox Oyy Tuy G, MARGIN®
(PSD) (PSI) (PSI) (PSID) OF SAFETY
1 OPTIONI 19851 -14918 8000 33238 20.4%
2 OPTION II -19997 15000 -7956 33388 19.8%
3 OPTION III 20000 -14998 7940 33377 19.8%
4 OPTION IV 20000 -15000 8000 33422 18.7%
5 EXACT || 19782 -14872 7997 33144 20.7%

(1) Gypqq = 40000 PSI
(2) Margin of safety = ((Gyqq / 6,)-13100

TABLE 1 Equivalent stress (Von Mises) and margin of safety for various cases

From table 1, we can conclude that when the phase angle difference between
the stress components is close to either 0 or 180 degrees, it is possible to use one of
the above listed options to obtain a good approximation of the equivalent Von Mises
stress and consequently, the margin of safety.

2.2 Example no 2

In this example, the phase angle difference between the various stress
components is general. This situation arises when the excitation frequency is in the
viscinity of closely spaced modes or when the modal density is high. The following
figure shows the three stress components with respect to a given the reference phase
angle.
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FIGURE 2 2D stress component vectors with respect to the reference phase angle (wt)



2,0 PROBLEM DEFINITION (...)

Using the four options presented in example 1, the following results are
obtained.

CASE | DESCRIPTION ’ O Oy Ty G, MARGIN®
(PSI) (PSD) (PSI) (PSI) | OF SAFETY
1 OPTION I 14142 -12287 8000 26771 49.4
2 OPTION II -19696 15000 -6553 32205 24.2
3 OPTION III 20000 -14772 5656 31774 25.9
4 OPTION IV 20000 ~15000 8000 33421 19.7
5 EXACT " 19958 -14572 5279 31386 27.5

(1) Oy = 40000 PSI

TABLE 2 Equivalent stress (Von Mises) and margin of safety for various cases

From table 2, it may be seen that there is a significant scatter between the
margins of safety calculated using the four options. These differences can lead to
either an over or under estimation of the actual margin of safety.

3.0 THEORY

In order to address the difficulties brought out in example 2, a method to
calculate the minimum margin of safety for various yielding, failure and instability
criteria was developped. In the next section, a detailed description is given for the
method applied to the yielding criterion. For this case, an analytical expression is
derived. For the other criteria, no closed form solution exist and the problem is solved
numerically for each element.

3.1 YIELDING CRITERION - DUCTILE MATERIAL

The stresses resulting in a 2D element from a harmonic excitation are as
follows:

o, (=0, | cos(wt+3) (2)
0,() = |0”| ~cos(wt+Pp) 3)
T, (1) = |t | -cos(wt +d) 4)



3.1 YIELDING CRITERION - DUCTILE MATERIAL (...)

If we let the 'wf’ equal 6 in equations 2 thru 4 and introduce these new
relationships in the general 2D Von Mises expression [3], it is possible to demonstrate
that the equivalent stress is as follows:

03(8) = (|0, [>:c0s?(8+8) + |0, |* «cos?(0+P) +3- |, [*-cos® (@ +) - )
lo| |0, cos(@+8) -cos(@ +B))

Equation 5 can be simplified to the following form:

0,2(8) =H(6)

(6)
o,=VH(8)
If we set the derivative of equation 6 with respect to 6 equal to zero,
do (0
%) = 1 .4H(6) =0 (7)

a8  2./H® 9O

and using this expression, it is possible to show that the reference phase angles
resulting in the minimum and maximum values of Von Mises stress will satisfy the
following relationship.

|0, *-sin(28) + |0, [*sin(2B) +3| 7, |2 sin(2 )

|0 [?cos(28) + o, [*cos(2B) +3* |, [*-cos(2¢)
~ 10,1 |0y, | sin(d +B) ®)

- |0l o, |-cos(8+PB)

-tan(20) =




3.1 YIELDING CRITERION - DUCTILE MATERIAL (...)

With equation 8, it is possible to evaluate the reference angle (0) for the
calculation of the exact maximum equivalent Von Mises stress. From the maximum
equivalent Von Mises stress, it is possible to calculate the exact minimum margin of
safety from the following relation

MS. =24 _ 1 9)

Similar derivations have been performed for the 3D case with o, 6y, G, T,
Ty T

xz? “yz*

3.2 INSTABILITY CRITERION - HONEYCOMB MATERIALS

In the case of local instability failure criteria such as in honeycomb materials,
the fundamental relationships for the calculation of the margins of safety are directly
evaluated from all stress field components. In the case of 2D element, the stress field
is defined by the same relations as equations 2 thru 4. A typical and simplified
relationship for the evaluation of the margin of safety associated with an instability
failure in honeycomb materials is

1

M.S.(e) = m - 1.0
a §
3 3 % (10)
R,®)= (0,,0) +0,00)) . R(©)- T,,(0)
a a
where R, : Compressive stress ratio
R, : Shear stress ratio
c, : Compressive instability
limit (pure mode)
T, : Shear instability limit (pure
mode)



3.2 INSTABILITY CRITERION - HONEYCOMB MATERIAL (...)

The reference angle for the minimum margin of safety can be determined with
the following relationship

dMs) _ d 1 o an
d@ d® |R,(8)+R (6)

The solution of the above equation will lead to an expression for which it is
impossible to get the critical values of the reference phase angle in an explicit form.
In this case, equation 11 is numerically solved using a simple quadratic interpolation
method for the calculation of the minimum margin of safety with the constraint that
the stresses must be compressive since this is a requirement for an instability failure.

It is important to note that the above relationship is valid under the
simplifying assumptions stated. In reality, the problem is much more complex [2]
because the sign of 6,, and 6,, will introduce either a completely new relationship for
the margin of safety calculation or correction terms to be added in equation 10.

3.3 OTHER CRITERIA

The above section presented the basic derivations for the calculation of the
exact minimum margin of safety of a ductile material (Von Mises criterion) and
honeycomb material (local instability failure). It is possible to extend the present
method to brittle materials using typical failure theories such as the maximum
principal stress theory, the Coulomb-Mohr theory or the modified Mohr theory.

4.0 MSC/NASTRAN POSTPROCESSOR

In order to implement the above theory, a MSC/NASTRAN post processor was
developed. The software input and output files are shown in the next figure.

FORT.11

STRESS OUTPUT

FORT.3

FIGURE 3 File structure for the MSC/NASTRAN post processor
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4.0 MSC/NASTRAN POSTPROCESSOR (...)

The fort.11 is a binary file created by MSC/NASTRAN with the proper DMAP
alter for static solutions (SOL 24, SOL 61 and SOL 101) or modal frequency response
solutions (SOL30, SOL71 and SOL111). The binary files include the stress results
requested by the ELSTRESS card in the case control deck. The elements supported
by the software are :

1D ELEMENT CROD,CBAR,CBEAM
2D ELEMENT CTRIA3,CTRIA6,CQUAD4,CQUADS
3D ELEMENT CPENTA,CHEXA

The fort.3 is a user’s input file which define the element ranges along with
corresponding failures theories, range subtitles, factors of safety and allowable
stresses.

The STRESS software is written in fortran 77. The processor is mainly used
for the calculation of the minimum margin of safety for all the elements selected in
the fort.3 file and to output the minumum margin of safety of all elements below a
certain threshold.

50 RESULTS

The validation of the above expressions was performed by plotting either the
maximum equivalent stress (ductile material case) or the minimum margin of safety
as a function of wt. From these plots, it was possible to evaluate the reference angle
6 for which the maximum equivalent stress and consequently the minimum margin
of safety occured. This process is illustrated in figure 4 using the example presented
in section 2.2.

From equation 8, it is possible to calculate the reference phase angles
associated with the stress field presented in section 2.2. The associated minimum and
maximum equivalent Von Mises stress are then calculated from equation 5. The
results obtained are as follows:

0, = -4.75° o,, = 8672.3 PSI
0, = 85.25° o,, = 32206.1 PSI
The comparison between these results with the minimum and the maximum

values obtained from figure 4 show excellent agreement. It is possible to show the
same agreement for all criteria implemented in the postprocessor.
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FIGURE 4 Equivalent Von Mises stress as a function of @

6.0 DISCUSSIONS AND CONCLUSION

A general theory for the calculation of the minimum margin of safety for stress
results obtained from a frequency response analysis was presented. In the case of
ductile material (Von Mises criteria), an analytical relationship was derived. In the
other cases, the minimum margin of safety is calculated with a numerical method
based on simple quadratic interpolation.

The implementation of the theory was done through a postprocessor software.

This method and the associated postprocessor software have been sucessfully
implemented at Spar Aerospace Limited.
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