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ABSTRACT

The paper reviews the application of FEM - EMA correlation and validation techniques to a
body-in-white, namely the 1991 GM Saturn four door Sedan. The FEM model of this car
consisted of 46830 dof’s (half model). A multi-point experimental modal analysis (EMA) survey
was executed for 360 response dof’s. Classical techniques for correlation analysis such as MAC
are applied. The paper introduces as well a variation of the MAC calculation that enables a better
identification of regions of difference between FEM and EMA. Error localization methods have
been applied to identify the regions of the FEM model causing most of the discrepancies between
FEM and EMA. A FEM model updating procedure was executed to reduce the difference
between FEM and EMA to acceptable limits.



1. INTRODUCTION

In the past decades numerous papers have been published on the verification of FEM models
using measured data. Normal mode parameters are most commonly used as a comparison basis
to describe the discrepancies between the analytical (FEM) and test (EMA) model. Model
updating procedures are conceived to adjust FEM models so that the updated modal parameters
better fit the experimental modal results. Most of the updating procedures can be classified either
as a one step, non-iterative method or as an iterative method based on a sensitivity formulation
[1]. The last approach yielding physically relevant and interpretable resuits is preferable to the
direct matrix approach where individual stiffness and mass matrix elements can alter without
any relation to the physical model from which they originate.

2. UPDATING OF LARGE FEM MODELS

Although some powerful iterative techniques have been developed in recent times to increase
the interpretability and controllability of the updating process some negative characteristics still
limit the applicability of these methods when large, complex FEM models are confronted with
real measured data. First of all, the selectable parameters of the updating procedures correspond
to physical FEM model attributes. In the modelization of complex structures such as a car body
many idealizations (geometry, material properties, joints) have to be made resulting in error
sources which can not be identified. In such a situation the required modal state may still be
achieved by FEM model updating techniques but the modified FEM model will not reveal the
real error source. Even in the case where all errors are caused by wrongly specified FEM input
data, the success of the updating procedure will strongly depend on the selection of design
parameters the analyst assumes to be wrong.

Furthermore typical incompatibilities between FEM and test models such as the mismatch in
model size impose severe restrictions on model updating techniques that are based on
orthogonality conditions. Indeed when measuring less than a half percent of the total number
of FEM dofs, the expansion of test vectors (or the condensation of FEM matrices) can hardly
be justified. Another incompatibility arises from the fact that usually complex modes are
identified during a modal survey. Comparison with FEM normal modes necessitates
transformation techniques to convert the complex test modes into real valued vectors ([2],[3]).
These mode shape coefficients can be included as target parameters of the updating process
when assuming a high quality EMA curve fit, a high one to one correlation between EMA and
FEM modal vectors, a correct (FEM compatible) scaling of the test vectors and negligible
transformation effects. The above mentioned restrictions can lead to a too limited set of target
parameters in the updating process so that no unique solution can be guaranteed. In such
situations input of the analyston possible error locations are essential. Error localization methods
complement the intuition of the analyst in the identification of these error regions. In the
following application such an error localization method is presented together with a new analysis
technique for better identification of discrepancies between correlated modal vectors.

3. APPLICATION SET-UP
3.1 Introduction

The structure under analysis is the body-in-white of the 1991 Saturn four door Sedan; see Figure
1.

3.2 FEM Model

The analytical dynamic characteristics of the body-in-white were predicted using an
MSC/NASTRAN FEM model. Taking advantage of symmetry, only the right hand side of the



structure was modeled, with both symmetric and anti-symmetric boundary conditions being

applied to the centerline grids of the model. Figure 2 gives a general overview on the FEM
model.

Thin shell elements, QUAD4 and TRIA3, were used to model the physical parts of the body.
Floorbeads, stiffening ribs, and associated parts were modeled with BAR elements. Spot welds
that connected individual parts were simulated with RBE2 elements. A summary of the
MSC/NASTRAN model attributes is given in Table 1.

MSC/NASTRAN Model
Attributes Number

QUAD4 5421

TRIA3 1365

Elements BAR 160

RBE2 1390

Nodes GRID 7805
Materials MAT1 164
Properties PBAR 11
PSHELL 82

Table 1. MSC/NASTRAN Model Attributes of SATURN body-in-white spaceframe

Solving this dynamic model yielded 8 symmetric and 9 anti-symmetric normal modes in the 0
- 75 Hz frequency range of interest.

3.3 Test Model

To quantify the dynamic characteristics of a production body-in-white and verify the dynamic
prediction of the finite element model, an experimental modal analysis (EMA) survey was
performed.

The body was supported by four air bladder isolators to approximate a "free-free" boundary
condition for the test.

The body was excited with two electro-mechanical shakers using a burst random excitation
technique. The frequency range of interest was 100 Hz. Frequency response function (FRF)
data were obtained at 360 measurement. degrees of freedom using 120 piezo-electric
accelerometers. Figure 3 illustrates the measurement geometry of the test structure using a wire
frame model representation. Exciter locations are identified with arrows.

The modal parameters of the body were obtained using the complete set of measurement FRF’s
and a least squares complex exponential parameter estimation technique. A total of 34 significant
measurement modes were obtained in the 0 - 100 Hz frequency range.



3.4 Data Transfer

Both dynamic models were transferred to the database of CADA-LINK, a product for FEM-EMA
correlation analysis. Interfacing to MSC/NASTRAN was realized through an OUTPUT? file.
Measured data was extracted from a CADA-MODAL database.

4. CORRELATION ANALYSIS

4.1 Test/Analysis Geometrical Correlation

A first requirement when dealing with large scale FEM and EMA models is the disposal of
efficient data management tools to store the vast amount of analytical and experimental data in
a coherent format, to build appropriate display models for simultaneous visualization of test
and analysis results and to organize the FEM model in logical entities on which FEM -EMA
correlation and updating techniques will operate. Animportant aspectin the compatibility phase
is the identification of FEM dofs that have been measured. To this purpose the complex FEM
geometry is compared with the test wire frame model. Based on four graphically correlated
nodes, the experimental coordinate system was positioned in the analytical one with 3
translations, 3 rotation angles and a length scale factor. Checks were also made for missing (e.g
rotational) dofs and incompatible nodal coordinate systems. Figures 4 and 5 show how the test
wire frame model of the full car is fitted to the FEM model of the half car. Recovering the
common dofs between FEM and EMA the test modal vectors were transformed to the FEM
analysis system. A second geometrical correlation analysis was performed with a mirrored FEM
geometry model. Not the whole FEM model was mirrored but only a wire frame model generated
from the set of connections between previously correlated test nodes. The mirror action was
also executed on the FEM modal vectors restricted to the common FEM and EMA dofs. After
correlation with the test wire frame model, the comparison between these reduced FEM modal
vectors of the full car and the test mode shapes could be started.

4.2 Test/Analysi orrelati
Modal Correlation ysing the MAC Criterion

The anti-symmetrical and symmetrical FEM mode shapes were merged in one modal database
and correlated with the test mode shapes using the Modal Assurance Criterion (MAC) technique.
The MAC matrix correlating the 17 FEM modes with the first 20 test modes is visualized in
Figure 6. From this MAC matrix the mode pairs with the highest MAC value were extracted
(excluding the rigid body modes). They are listed in Table 2 and visualized in Figures 7 and 8
with a frequency error chart and a 2D frequency graph.



Original FEM EMA diff diff MAC
Frequency Frequency
(Hz) (Hz) Hz %
27277 25.419 -1.859 -6.8 0.867
28.513 28.631 0.117 0.4 0.905
42.051 42.025 -0.027 -0.1 0.810
49.408 43318 -6.089 -12.3 0.661
51.833 52.376 0.543 1.0 0.556
55.998 57.340 1.342 2.4 0.446
61.631 59.797 -1.834 -3.0 0.239
62.054 61.221 -0.833 -1.3 0.412
64.424 61.421 -3.003 -4.7 0.399
68.959 66.742 -2.217 -3.2 0.503
71.373 69.249 -2.123 -3.0 0.797

Table 2. Frequency comparison of original FEM and EMA dynamic models.

Five mode pairs show a correlation with a MAC higher than 0.65. Figure 9 illustrates one of
them. A very low correlation (0.239) is also observed in the correlation table. The FEM mode
shape (Figure 10) shows a very local deformation of the car. With the exciter located in front
of the car (Figure 3) it is not likely to extract this pure local mode. The other correlations have
a0.4-0.55 MAClevel, Differences in mode shape behavior between these correlated mode pairs
can be observed in an animated display but no conclusions can be drawn explaining which
regions of differences are causing the low MAC value.

MAC Variation Technique

Starting point of the method is the definition of the Modal Assurance Criterion (MAC), [4]
correlating two vectors X and Y of vector length N :

{XTH Y’ M
(XD X\ YT} Yy}

N
MACyy =

Significant modal vector discrepancies have a negative or zero contribution to the vector product
of the denominator. Typically these discrepancies correspond to an anti-phase behavior between
the two vectors or a local deformation observed in one mode and not in the other one. These
differences are identified with a procedure evolving over several steps (S = 1,N-1). In each step
a dof will be identified that influences the MAC value the most in negative way :

1. Construct subvectors Xy _(s_jyand Yy __;, by excluding the dofs identified in the previous
steps.

2. for each of the remaining dofs MACy y, is calculated with subvectors Xy_g and Yy _g
obtained by excluding the dof under analysis from the subvectors of step 1.

3. the dof that will be retained in step S is the one with the highest MAC value calculated in
step 2.

4. exclude thisdof from Xy _s_;)and Yy __;, and calculate vector lengths || Xy _d| and || ¥y _d .



At the end an ordered list of dofs is obtained with three values associated to each of them. The
first one is the MAC value obtained by excluding the actual dof and the dofs of the previous
steps from the MAC analysis. The two other values are the vector lengths of the subvectors so
created. This information gives the analyst an idea on how much of the original motion must
be excluded to obtain a certain MAC level. Local differences can have a strong influence on
the global correlation value as illustrated in Figure 11 presenting the results of a MAC variation
analysis on the correlated mode pairs shown in Figure 12. In this case the original MAC value
of 0.55 can be raised to 0.72 by restricting the FEM and EMA vectors with respectively 5 and
2 percent. Rather than picking individual dofs the method identifies regions of modal vector
discrepancies. A second illustration shown in Figures 13 and 14 compares a local FEM mode
shape with a global EMA mode shape. In the MAC variation analysis first a region at the back
of the car is identified where the FEM and EMA mode shapes are in anti-phase. Next, regions
are identified were deformation is observed in the EMA mode shape but not in the FEM vector.
The difference global versus local mode is indicated by the fact that a MAC level of 0.70
(originally 0.50) is obtained by removing 19 percent of the motion of the test vector and only
4 percent of the FEM vector.

4.3 Analysis Model Updating
Model ing A
The updating technique used in the present application is based on a forward sensitivity

formulation in which sensitivities of modal parameters to proportional changes of the FEM
element matrices are applied ([5]) :

tat = {q}+ [SUp}) {ap} 2)
nx1 nxl nxN Nx1
where,
{9} represents the desired state of the n modal parameters
{q} represents the current state of the n modal parameters
{p.} represents the current state of the N system variables that can vary during

the updating process. These parameters are selected to be proportional to
the element mass or stiffness matrix or to a group thereof.

[SEph is the matrix of sensitivity coefficients of the n modal parameters w.r.t the
N system variables. [6]

Equation (2) is solved for parameter updates {dp} using a Bayesian parameter estimation scheme
that allows the analyst to express his confidence in each of the target modal parameters and the
current parameter state.

Definition of Model i

Animportant aspect of the FEM model updating procedure is the appropriate choice of updating
parameters. Elements of the half car FEM model with equal properties were processed into
groups for which the stiffness or mass characteristics could vary as a whole. Some of the larger
groups were split in smaller ones in order to have a more reasonable element distribution. A
total of 106 groups were defined. They are visualized in Figure 2.



As the number of system variables (106 stiffness and mass parameters) largely exceeds the
number of target responses (N = 212 >> n = 11 in equation (2)), it is not advised to apply the
above updating procedure without locating the dominant errors in the model first. A method
similar to the one proposed in [7] was used for this purpose. The principal idea behind this
method is that it retains those columns of the sensitivity matrix that are best suited to represent
the difference vector {d}:

it = {q}-{q} = I[Sy{dp} 3)

The procedure progresses in successive steps and quite similar to the MAC variation analysis
method. In each step (s) the subspace of the previous step is extended with one dimension.
Among all possibilities the subspace is selected in which the difference vector { d } is described
most accurately :

1. Construct submatrix Sj,_, with the columns of matrix Sy selected in the previous steps.

2. for each of the remaining columns parameter updates {dp,} are calculated by adding the
column under analysis to S, _;, yielding S, and solving equation (4) in a least square sense

{d} = [S]{dp} @

3. the error norm e is computed from the difference between the distance vector { d } and its
representation { d’ } in the subspace

{dt = [S]{dp} (5)

e = [{a}-{d'}l (6)

4. the column yielding the smallest error norm e is retained

In order to prevent excessive deviation from the original state a Bayesian parameter estimation
scheme was used to solve equation (4). With a global weighting factor the level of parameter
updates was controlled. This way parameters with very low sensitivity values are excluded from
the error identification process. As the dimension of the subspace is incremented during each
step the representation of the distance vector improves and consequently the error norm is a
non-increasing function of the number of steps. A typical function is shown in Figure 15. Each
step (x-axis) in this figure is represented by the column that was selected in that step. Instead
of the column number the parameter corresponding to the column is indicated with a group
name and a parameter type (MASS or STIFFNESS). Most of the discrepancies between the
FEM model and the structure are removed in the beginning of the process as the subspace grows
relatively most in this phase. Dominant modeling errors are identified by the parameters which
were first selected in the error localization process. After a number of steps the slope of the error
norm function is small. Adding one more parameter to the already selected parameter set will
not significantly contribute to a better representation of the distance vector. A second type of
function shows the evolution of an individual parameter update as a function of the number of
steps. A typical function is shown in Figure 16 where the evolution of the parameter selected
in the first step of Figure 15 is visualized. For each step the vector of parameter updates can be
visualized with a histogram. As an example the parameter updates at the last step of Figure 15
are shown in Figure 17. The results of the error localization procedure is conditioned by the



definition of the distance vector (the number of sensitivity equations), the definition of the
updating parameters (group definitions) and the weighting of these parameters. The influence
of weighting on the error identification process is presented with Figures 15-17 (medium
weighting of parameters), Figures 18-20 (low weighting), and Figures 21-23 (high weighting).
A low weighting factor yields a high quality result (small error norm in Figure 18) but the level
of parameter updates is considerable high (Figure 20). A high weighting factor reverses this
situation. A medium weighting factor yields a good compromise. (Figures 15-17). The error
localization results of this case are also confirmed by the fact that most of the identified error
parameters were also detected in the case with low weighting.

Analysis Model Updating

The dynamic model updating technique outlined in section 4.3.1 has been implemented in the
LMS CADA LINK software package. A total of 212 system variables, described in section
4.3.2. was considered for the correction of the frequency discrepancy between 11 correlated
mode pairs (section 4.2). The parameters identified with the error localization method (section
4.3.4) received a low confidence factor. After eight iterations the frequency alignment shown
in Table 3 and Figures 7-24 was obtained. Frequency differences were limited to maximum 5
percent and the initial error norm was reduced with 75 %.

Updated FEM EMA diff diff MAC
Frequency Frequency
(Hz) (Hz) Hz %
25.388 25.419 0.031 0.1 0.915
28.545 28.631 0.085 0.3 0.880
41.377 42.025 0.647 1.6 0.805
44.495 43.318 -1.177 -2.6 0.673
51.587 52.376 0.789 1.5 0.460
56.805 57.341 0.537 0.9 0.552
59.727 59.797 0.069 0.1 0.373
60.421 61.221 0.800 1.3 0.351
62.174 61.421 -0.753 -1.2 0.369
66.833 66.742 -0.091 -0.1 0.518
69.257 69.249 -0.008 0.0 0.796

Table 3 Frequency comparison of Updated FEM and EMA dynamic models.

The updated parameters correspond to the ones identified with the error localization method.

5. CONCLUSIONS

The application of classical FEM-EMA correlation and validation techniques in a realistic
industrial environment have been reviewed. When comparing the dynamic characteristics of
large FEM models with the dynamic behavior observed on the test structure some of the classical
correlation techniques such as mode shape expansion, FEM system matrix reduction techniques
and orthogonality checks can not be applied anymore. Mode shape animation is a powerful tool
for the observation of mode shape differences but can not quantify the effect of local differences
on the overall correlation between two mode shapes. An approach is presented for the
identification of the regions of differences between mode shapes. Based on a MAC variation
technique the method highlights the important modal vector discrepancies and orders them
according to their effect on the global correlation of the two vectors (MAC). Having identified
dominant errors in the FEM model with an error localization technique a substantial reduction
of the FEM-EMA frequency misalignment was obtained with a model updating technique based



on a forward sensitivity approach. Since the overall structure of the FEM model is preserved in
this approach, it allows the analyst to interpret the updating resuits with his own engineering
experience and intuition.
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FIGURES

Fig. 1 : Saturn Sedan Body-in-White



Fig. 2 : Saturn Sedan FEM Model

Fig. 3 : Saturn Sedan EMA Model
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