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ABSTRACT

An eigenvalue quality estimate has been implemented in
MSC/NASTRAN. The quality estimate is based on the eigenvalue
difference from a lumped and consistent mass matrix formulation.
This difference represents the error associated with the
discretization of the finite element model. Normally two
eigensolutions are required to compute the error estimate.
However, several approximate solution techniques have been provided
to efficiently compute the consistent mass matrix eigenvalues. The
eigenvalue quality estimator has been implemented as a set of
Direct Matrix Abstraction Programming (DMAP) alters to SOL 103
(SEMODES) of MSC/NASTRAN Version 67. Several numerical examples

are provided to demonstrate the method.



INTRODUCTION

Finite element analysis of structures requires a discretization
by finite elements. The discretization is accompanied by modeling
error which is called the error in discretization. This error may
be reduced by mesh refinement. Here the analyst seeks an adequate,
but not excessive mesh in order to create a manageable problem
size. An estimate of eigenvalue quality has been implemented in
MSC/NASTRAN based on a difference in eigenvalues computed from a
lumped and consistent mass matrix [1]. This difference represents
the error in discretization and varies with each eigenvalue. The
eigenvalue quality generally decreases with increasing eigenvalue.

Two eigensolutions are required to obtain the quality estimate.
The initial eigensolution is obtained using a lumped mass matrix
and the latter by a consistent mass matrix formulation. Since two
eigensolutions are relatively expensive, various approximate
solution techniques are provided to efficiently compute the
consistent mass matrix eigenvalues. These approximate solution

techniques are as follows: static mode reanalysis [2], Rayleigh's
gquotient {3], Timoshenko's guotient [3], and the inverse iteration
quotient ([3]. The capability for an exact consistent mass

eigensolution is also provided for small problems. Numerical

examples are given to demonstrate and validate the method.



PROBLEM DEFINITION

The eigenvalue percent difference is given by
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where

AL represent the lumped mass matrix eigenvalues

A, represent the consistent mass matrix eigenvalues
Equation (1) gives a percent difference in lumped and consistent
mass matrix eigenvalues for each eigenvalue extracted from the
finite element model. The lumped mass matrix contains only
diagonal terms, whereas the consistent mass matrix contains off-
diagonal terms consistent with the element shape functions which
define the stiffness matrix. It is well known that frequencies
usually converge from below when the mass matrix in lumped and
converge from above when the mass matrix is consistent. The lumped
mass and consistent mass eigenvalues bound the exact eigenvalue
from below and above for each mode. Equation (1) provides the
analyst with the percent eigenvalue difference for each mode
extracted. A significant difference between A, and A_ suggests that
the mesh is not adequate for that particular mode and should be
refined. 1In order to utilize equation (1), the mass matrices must

be derived from element densities and not concentrated masses.

IMPLEMENTATION IN MSC/NASTRAN

MSC/NASTRAN SOL 103 is used to obtain the lumped mass matrix
eigenvalues. The consistent mass matrix is assembled in
MSC/NASTRAN and various approximate eigensolution techniques may be
employed at the user's discretion to obtain the consistent mass
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matrix eigenvalues. The following solution techniques have been
programmed in DMAP:

(1) static mode reanalysis method

(2) Rayleigh's quotient

(3) Timoshenko's quotient

(4) Inverse iteration quotient
The user may also chose the exact solution for small problems. The
static mode reanalysis, Timoshenko's dquotient, and inverse
iteration quotient methods are set up for models without rigid body
degrees of freedom only since they require a decomposition of the
stiffness matrix. However, if rigid body modes are present the
eigenvalues are identically zero for both mass formulations and the
percent difference will not be defined since the numerator and

denominator of equation (1) are zero.

STATIC MODE REANATLYSTS

To compute modes using static mode reanalysis, a static shape

must be computed from the following equation:

;= K112, [AM [$,]) (2)

where

: is the i'M eigenvalue

K] 1is the stiffness matrix

1 is the i'M eigenvector

; is the i'" static shape

M] 1is the mass difference matrix between the lumped
mass and consistent mass formulations
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The static shape is the response due to a loading which is derived
from the difference in mass matrix formulations. Inherently, the
static shape contains lower order as well as higher order modal

information. Therefore it must be filtered of the lower order or



retained modes. This is accomplished by the following:

V=y-0667"[My (3)
The filtered static shapes or residual static modes are now
appended to the retained modes forming a new global approximation
function. The consistent mass and stiffness matrices are pre and
post multiplied by the global approximation function creating a
reduced order eigenproblem which may be solved efficiently in
MSC/NASTRAN. Reference [2] provides a complete derivation of the
method.
RAYLEIGH'S QUOTIENT

Rayleigh's method for computing conservative system eigenvalues
utilizes an assumed mode for harmonic motion and then equates the
maximum kinetic energy to the maximum potential (strain) energy.
For a discrete system, Rayleigh's quotient is defined by
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where [M_] is the consistent mass matrix

TIMOSHENKO'S QUOTIENT

Timoshenko's quotient is given in reference [4] as
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In terms of present nomenclature,
V= [¢], B=[M], A=[K], and C = [M][K]'[M]
Timoshenko's quotient may now be expressed as a generalized

Rayleigh quotient obtaining
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where

x = [K17t M) (7)

INVERSE ITERATION QUOTTENT

h

In inverse iteration, the eigenvalue at the r'* iteration is

computed from the Rayleigh quotient

Ao = () TIK] (¢7) )
(¢2) T[M] (¢P)
with
(K] (61) = [M] (§=°1) (9)
specifically, for r=1,
A - (¢t”)f[K](¢u)) (10)
(d)(l) [M] ((I)(l))
and
(¢6®) = [K]1[M ($'?) (11)

Now substitute equation (11) into equation (10) obtaining
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with (¢) = (¢(®). Note that the eigenvalues obtained from the above



methods are as follows

A, s IO <TQO < RO (14)
with the static mode method eigenvalue closest to ), (the exact
consistent mass eigenvalue).

The static mode reanalysis method approximates the eigenvalues
more accurately than the other methods since the modification is
incorporated into the eigenvectors. Timoshenko's and the inverse
iteration quotient also recompute new eigenvectors. However,
Rayleigh's gquotient assumes the modified eigenvectors to be the
same as the original system or base eigenvectors. All of the above
approximate eigensolution techniques have been implemented as a set
of DMAP alters to SOL 103 of MSC/NASTRAN Version 67. Reference [5]
provides a description of the DMAP language. The user may choose
any of the fore mentioned methods by inserting a
PARAM, METHOD, XXXXXXX in the BULK DATA section of the input deck.
Here XXXXXXX is defined to be:

XXXXXXX = STATICR Static mode reanalysis

ITERQ Inverse iteration quotient
TIMQ Timoshenko's quotient
RAYLYQ Rayleigh's quotient

EXACT Exact solution

Note that the exact solution is the default method programmed in
DMAP. Appendix 1 provides a complete listing of the DMAP alters
required to compute the eigenvalue quality estimate. To insure the
total weight of the consistent mass matrix, the grid point weight

generator was turned on and printed in the .F06 file.



ANALYSIS
The eigenvalue quality estimator has been applied to the
following MSC/NASTRAN finite element models

1) cantilever beam (simple beam elements)

)

) cantilever frame (axial rod elements)

) cantilever plate (plate elements)

) large scale aircraft component (mixture of elements)

(

(2
(3
(4
Each finite element model was run using all five methods for the
modal quality estimate. The following is an example of the error
output in the .F06 file for the cantilever beam model, Rayleigh's

quotient, ten modes:

~~~*MODAL SOLUTION QUALITY ESTIMATE
~***RAYLEIGH QUOTIENT CONSISTENT MASS EIGENVALUES

~~~MODE NUMBER 1 HAS -2.396108E+00 PERCENT ERROR
~+~MODE NUMBER 2 HAS -3.990014E+00 PERCENT ERROR
~~~MODE NUMBER 3 HAS -5.387323E+00 PERCENT ERROR
~*~MODE NUMBER 4 HAS -6.725320E+00 PERCENT ERROR
~~~MODE NUMBER 5 HAS -8.022677E+00 PERCENT ERROR
~~~MODE NUMBER 6 HAS -1.026989E-01 PERCENT ERROR
~~~"MODE NUMBER 7 HAS -9.408460E+00 PERCENT ERROR
~~~MODE NUMBER 8 HAS -1.176371E+01 PERCENT ERROR
~~~MODE NUMBER 9 HAS -1.602735E+01 PERCENT ERROR
~~~"MODE NUMBER 10 HAS -2.331698E+01 PERCENT ERROR

Figure 1.0, 2.0, and 3.0 show the cantilever beam, frame, and
plate models. The large scale aircraft component model is
approximately 11,000 degrees of freedom. This model is used to
demonstrate the efficiency of static mode reanalysis in determining
eigenvalues.

Tables 1.0, 2.0, 3.0, and 4.0 present the eigenvalue percent
differences computed by the four approximate methods compared to
the percent differences computed with the exact consistent mass
matrix eigenvalues for each of the models. Note that ten modes

were extracted for each model.



DISCUSSION

In order to evaluate eigenvalue quality, a criteria must be
defined to interpret the computed results. In general, an
eigenvalue percent difference of less than 5% should be considered
acceptable. However, the mesh should be refined for greater
percent differences especially if those modes are to be utilized in
other dynamic analyses. Table 1.0 presents the eigenvalue quality
estimates for the cantilever beam of Figure 1.0. The cantilever
beam model gives acceptable eigenvalues up to the fifth mode.
Static mode reanalysis estimates the beam consistent mass
eigenvalues very accurately. However, this problem becomes ill-
conditioned at the addition of a tenth mode. Therefore only nine
modes are extracted. The other approximate techniques show the
correct trend but offer appreciable errors when compared to the
exact percent differences. Table 2.0 shows the results of the
cantilever frame frequency quality estimates. All ten modes of the
frame model are within the criteria for acceptable eigenvalues.
The approximate methods also perform well for the CROD element
frame model. Table 3.0 presents the eigenvalue quality estimates
for the cantilever plate model. All modes with the exception of
five and ten are deemed "good" by the quality estimate. Again all
of the approximate methods perform well in obtaining the consistent
mass eigenvalues. Table 4.0 shows the frequency quality estimates
of the large scale aircraft component model. The first six modes
have less than a five percent difference. All of the approximate

methods perform reasonably well with the exception of the last



mode. The approximate eigensolution techniques efficiently extract
eigenvalues from the finite element models. Significant CPU time
savings can be realized on large scale models. Table 5.0
demonstrates the efficiency of the approximate methods.

CONCLUSTONS

Currently many industries require the use of finite element
models to predict the behavior of actual structures. It is of
tantamount importance that these models be constructed with high
quality. The error of discretization must be kept to a minimumn.
This paper presents a simple eigenvalue quality estimator that
provides MSC/NASTRAN user's with a gauge to measure the quality of
their finite element model's modal characteristics with respect to
discretization error. Future work should also include eigenvector
error calculations, since mode shapes are also important. Both
errors may also be used to adaptively refine the model mesh to

define higher quality dynamic finite element models.
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Figure 1.0 A Cantilever Beam Model
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Figure 2.0 A Cantilever Frame Model
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Figqure 3.0 A Cantilever Plate Model

Table 1.0: Beam Eigenvalue Percent Quality Estimates

Mode No. Exact Static Iteration Timoshenko Ravleigh
1 -.46 -.46 -2.25 -2.28 -2.40
2 -1.58 -1.58 -3.82 -3.86 -3.99
3 -2.61 -2.61 -5.21 -5.25 -5.39
4 -3.72 -3.72 -6.47 -6.51 -6.73
5 -5.00 -5.00 -7.65 -7.70 -8.02
6 -0.10 -0.10 -0.10 -0.10 -0.10
7 -6.64 -6.64 -8.62 -8.70 -9.41
8 -9.,10 -9.10 -10.35 -10.46 -11.76
S -13.20 -13.28 -13.07 -13.49 -16.03
10 -20.08 -_— -19.65 -20.45 -23.32
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Table 2.0: Frame Eigenvalue Percent Quality Estimates

Mode No. Exact Static Iteration Timoshenko Ravleigh

1 -0.01 -0.01 -0.01 ~0.01 -0.01
2 -0.16 -0.16 =0.16 -0.16 -0.16
3 -0.19 -0.19 =0.19 =-0.19 -0.19
4 -0.84 -0.84 -0.84 ~-0.84 -0.84
5 -2.05 -=2.05 -2.05 -2.05 -2.05
6 -1.50 -1.50 ~-1.50 -1.50 =-1.50
7 -3.48 -3.48 ~-3.48 -3.48 -3.48
8 -4.76 -=4.76 -4.77 -4.77 -4.77
9 -2.92 =2.92 =-2.92 =-2.92 -2.92
10 -3.10 -3.10 ~-3.10 =-3.10 -3.10

Table 3.0: Plate Figenvalue Percent Quality Estimates

Mode No. Exact Static Iteration Timoshenko Rayleigh

1 -0.38 -0.38 -0.40 -0.40 =0.40
2 -0.67 -0.67 -0.67 ~-0.67 -0.67
3 -2.65 =2.65 ~-2.76 -2.76 -2.77
4 -2.55 =2.55 -2.57 -2.57 -2.57
5 -6.24 -b6.24 -6.47 -6.47 =6.49
6 -2.02 =2.02 -2.02 -2.02 =-2.02
7 -4.57 =-4.57 -6.41 -6.42 -6.47
8 -2.20 -2.20 -3.51 -3.51 ~-3.52
9 -3.69 -3.69 ~3.69 -3.69 =3.70
10 -11.30 -11.30 ~11.26 -11.30 -11.44

Table 4.0: Large Scale Model Eigenvalue Percent Quality Estimates

Mode No. Exact Static Iteration Timoshenko Ravyleigh

1 -0.13 -=0.13 -0.13 -0.13 -0.13
2 -0.19 -=0.19 =0.19 -0.19 -0.19
3 -0.66 -0.66 -0.67 -0.67 =0.67
4 -0.35 -0.35 -0.38 -0.38 -0.38
5 -2.13 -2.13 -2.53 -2.54 -2.65
6 -2.35 =2.35 =-2.50 -2.53 -2.66
7 -5.27 -5.27 -6.43 -6.52 -7.01
8 -6.28 -=6.30 ~-5.65 -5.82 -6.45
9 -9.66 -10.23 -10.42 -11.01 -12.47
10 —l?.O7 -21.60 =-21.65 =-21.72 -22.03
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Table 5.0: Finite Element Médel CPU Comparisons (sec.)

Model Exact Static Iteration Timoshenko Rayleigh
Beam 43.06 18.19* 41.73 41.48 41.20
Frame 18.33 17.97 14.89 15.27 14.68
Plate 32.39 28.14 24 .06 24.01 23.81
Large 576.45 359.59 364.31 370.11 325.71

* only nine modes extracted using static mode reanalysis.
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APPENDIX 1 - EIGENVALUE QUALITY ESTIMATE DMAP

NASTRAN SPARSE=25
ID SPC,QUALITY ESTIMATE

TIME 50000
DIAG 8

SOL 103

COMPILE SEMODES SOUIN=MSCSOU NOLIST NOREF
ALTER 36 §

TYPE PARM,,CHAR7,Y METHOD='EXACT ' $
TYPE PARM,,1,Y,COUPMASS,GRDPNT $

TYPE PARM,,I,N,NMODES $

FILE LAMACM=OVRWRT/LAMAC=OVRWRT $
EMG EST,CSTMSMPTS,DIT,GEOM2S,,,/

KELM1,KDICT1,MELM1MDICT1,BELM1,BDICT1/
8,N,NOKGGX/S,N,NOMGG/S,N,NOBGG/S,N,NOK4GG/S,N,HNNLK
/Y111111/1//K6ROT $
EMA GPECT MDICT1,MELM1,BGPDTS,SILS,CSTMS/
MJ3JC,/~-1/V,Y,WTMASS=1.0 $
IF (GRDPNT >=0) THEN $
GPWG BGPDTS,CSTMS,EQEXINSMJJC/OGPWG1/GRDPNT/WTMASS §$
OFP OGPWG1// $
ENDIF §
EQUIVX MJJC/MNNC/NOMSET $
IF (NOMSET >=0) THEN $
MCE2 USET,GMMI1JC,,,/MNNC,,, $
ENDIF §
EQUIVX MNNC/MFFC/NOSSET $
IF (NOSSET >=0) THEN $
UPARTN USET ,MNNC/MFFC,,,/'N'/'F'/'S’ §
ENDIF $
EQUIVX MFFC/MAAC/NOOSET $
IF (NOOSET >=0) THEN $
UPARTN USET,MFFC/MAAC,,,/'F'/’A’[’0’ $
ENDIF §
PARAML PHA//'TRAILER'/1/S,N,NMODES $
$
$$ STATIC MODE REANALYSIS METHOD
$
IF (METHOD="STATICR') THEN $
ADD MMAAMAAC/DELM/-1.0$
MPYAD DELM,PHA,/DMPHI/0 $
MPYAD PHA MKAA,/LAMBD1/1$
MPYAD LAMBDI1,PHA,/LAMBD/0 §
MPYAD DMPHI,LAMBD,/PA/0 $
DCMP USET,SILS,EQEXINS MKAA/LLL,/-1/0/BAILOUT/
MAXRATIO/'F'/1.E-20/DECOMP//////S,N,SING /
S,N,NBRCHG/S,N,ERR §
FBS LLL,PA/PSI/-1$%
SMPYAD PHA,PHA MMAA PSI, PSI/PSIR/4/-1/1/0//1/// §
APPEND PHA,PSIR/PHIN/1 $
SMPYAD PHIN,MKAA PHIN,, /KHHN/3////1/]//6 $
SMPYAD PHINMAAC,PHIN,, /MHHN/3////1////6 $
REIGL KHHN,MHHN,DYNAMICS,CASECC,,,/LAMAC,
PHIQ MI,EIGVMAT,/'MODES'/S,N,NEIGV/NSKIP §
OFP LAMAC// $
MESSAGE //'MODAL SOLUTION ERROR ESTIMATE’ $
MESSAGE //'STATIC MODE REANALYSIS CONSISTENT MASS EIGENVALUES' $
CALL ERROR LAMA,LAMAC//NMODES/METHOD $§
ELSE IF (METHOD="ITERQ ’) THEN $
$
$$ ITERATION QUOTIENT
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DCMP USET,SILS,EQEXINS,MKAA/LLL1,/-1/0/BAILOUT/
MAXRATIO/’F'/1.E-20/DECOMP///// /SN ,SING/
S,N,NBRCHG/S,N,ERR $

MPYAD MAAGC,PHA,/ILOAD $

FBS LLL1,ILOAD/IY/-1$

SMPYAD 1Y MKAA,IY,,./IK/3////1]]//6 %

SMPYAD 1Y ,MAAC,IY,, /IM/3////1////6 $

SOLVE IM,IK/LAMACM $

DIAGONAL LAMACM/LAMAC $

MATPRN LAMAGC// $

MESSAGE //'MODAL SOLUTION ERROR ESTIMATE' §

MESSAGE //'ITERATION QUOTIENT CONSISTENT MASS EIGENVALUES’ $

CALL ERROR LAMA,LAMAC//NMODES/METHOD §

ELSE IF (METHOD='TIMQ ’) THEN §

$

$$ TIMOSHENKO’S QUOTIENT

$

DCMP USET,SILS,EQEXINS MKAA/LLL2,/-1/0/BAILOUT/
MAXRATIO/'F’/1.E-20/DECOMP//////S,N,SING/
S,N,NBRCHG/S,N,ERR $

MPYAD MAAC,PHA,/TLOAD $

FBS LLL2,TLOAD/TY/-1$

SMPYAD TY MKAA,TY,,,/TK/3////1//]/6 $

SMPYAD PHA MAAC,PHA,, /TM/3////1////6 §

SOLVE TK,TM/LAMACM §

DIAGONAL LAMACM/LAMAC $

MATPRN LAMAC// §

MESSAGE //'MODAL SOLUTION ERROR ESTIMATE' $

MESSAGE //'TIMOSHENKO QUOTIENT CONSISTENT MASS EIGENVALUES’ $

CALL ERROR LAMA,LAMAC//NMODES/METHOD $

ELSE IF (METHOD='"RAYLYQ ') THEN $

$

$$ RAYLEIGH'S QUOTIENT

$

SMPYAD PHA MKAA,PHA,, /RK/3////1////6 $

SMPYAD PHA MAAC,PHA,,,/RM/3////1///]6 $

SOLVE RM,RK/LAMACM $%

DIAGONAL LAMACM/LAMAC $

MATPRN LAMAG// $

MESSAGE //'MODAL SOLUTION ERROR ESTIMATE' $

MESSAGE //'RAYLEIGH QUOTIENT CONSISTENT MASS EIGENVALUES' $
CALL ERROR LAMA,LAMAC//NMODES/METHOD $

ELSE IF (METHOD='EXACT ’) THEN $

$

$$ EXACT

$

REIGL MKAA MAAC,DYNAMICS,CASES, MR,DM,USET/LAMAC,
PHIQ,MLEIGVMAT,/'MODES’/S,N,NEIGV/NSKIP $

OFP LAMAC//$

MESSAGE //'MODAL SOLUTION ERROR ESTIMATE’ $

MESSAGE //'EXACT CONSISTENT MASS EIGENVALUES’ §

CALL ERROR LAMA,LAMAC//NMODES/METHOD $

ENDIF $

EXIT $

COMPILE ERROR

SUBDMAP ERROR LAMA,LAMAC//NMODES/METHOD $
TYPE PARM,,CHAR7, Y METHOD='EXACT '$

TYPE PARM,]N,NMODES $

TYPE PARM,)YMODE,W $

TYPE PARM, RS,N,LMDL,LMDC,ERROR $

W=—4
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MODE=0
DO WHILE(MODE<NMODES) §
MODE=MODE+1 $
W=W+7 $
PARAML LAMA//'DTI'/2/W/S,N,LMDL $
IF (METHOD="STATICR' OR METHOD='EXACT ')THEN $
PARAML LAMAC//'DTI'/2/W/S,N,LMDC §
ELSE $
PARAML LAMAC//’DMI'/1/MODE/S,N,LMDC $
ENDIF $
ERROR=((LMDL-LMDC)/(LMDL+LMDC))*100.
MESSAGE //'MODE NUMBER'/MODE/' HAS'/ERROR/' PERCENT ERROR’ $
ENDDO $
RETURN §
END $
ENDALTER $
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