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ABSTRACT

With the emphasis on frequency response analysis case, development of the title computer
code capability and application of the latter in evaluation of the computational efficiency of the
MSC/NASTRAN code itself in the dynamic structural response analysis of nonproportionally -
damped elastic systems are made in this study. In this system, MSC/NASTRAN is used mainly
for physical or modal structural (mass, damping, and stiffness) matrix assembling. The newly
developed CMODEAN (Complex MOde/DEcoupling ANalysis) module uses the structural
matrices as input for complex normal modes (state eigenmodes) calculation and equations of
motion decoupling. Computational efficiency of CMODSTAN over MSC/NASTRAN for
frequency response analysis of nonproportionally damped systems is demonstrated by an example
problem with 225 dynamic degrees of freedom.



1. INTRODUCTION

There are a number of important classes of dynamic structural response analysis problems
(e.g., passive and/or active damping enhanced, control/structure analysis problems) that must
be treated as nonproportional damped elastic systems. Several efficient variants [1] of the
standard state vector modal methods [2,3] for decoupling equations of motion have been
formulated by the author. They were originally implemented into the baseline VAX version
(version 0) of an MSC/NASTRAN-interfaced computer code system, CMODSTAN, for
decoupling governing equations of motion and dynamic response analysis of nonproportionally
damped elastic systems. Since then, a new version of the code has been created on Multiflow
Trace 7/200 model minisupercomputer and a number of refinements/extensions have been made.
As a result, the new version of CMODSTAN can be called superefficient compared with the
frequency response analysis of the MSC/NASTRAN code [4].

Sections 2 briefly review the writer’s previously formulated algorithms in [1] for decoupling
equations of motion and dynamic response analysis. A brief description of the CMODSTAN
code system is given in Section 3. A benchmarking study of the CMODSTAN code system is
given in Section 4. Section 5 shows an example problem in which the widely used classical

modal selection criteria may not always yield correct dynamic responses.

2. THEORETICAL FORMULATION
Consider a general elastic system governed by the physical (j=P) or modal (j=M) equations

of motion

M{u";} + [Cl{w;} + KH{u} = {P()} (= P or M) ey

where

[M], [C], [Kj] = (NjxN;) symmetric physical (j=P) or modal (j=M) mass, damping, and
stiffness matrices, respectively

{u;} = the displacement vector

P}

i

the explicitly time-dependent applied force vector



oy = time (t) derivative

The subscript j (= P, M) will be dropped unless it is required for a clarity.

A. Matrix Equation of Motion Decoupling Techniques

(a) Case without Rigid-Body Components of Motion

To decouple this matrix equation of motion, it is first rewritten into the first order differential

equation (called "state vector", {v} with dimension N, = 2N) form

[Al{v’} = [BI{v} + {F} @

There are several ways in which Eq. (1) can be recasted into Eq. (2). Table 1 gives six

différent sets of matrix/vector representations. In this table, [X] = [Z] is the state modal matrix
of the adjoint (transpose) system of Eq. (2), [Q,] the diagonal natural modal frequency matrix
of the corresponding undamped free vibration system, i = (-1)*2, bold quantities are the
partitioned vectors or matrices, and subscript M and superscript T stands for "modal” and
"transpose”, respectively. Also shown in the last column of Table 1 is the (N_xN,) complex
participation factor matrix, [X], which results from decoupling the equations of motion discussed

below.

Let the (N,xN,) (complex) state modal matrix of Eq. (2) (with {F} = {0}) be

(¥} = {x.) ={ ‘;m} ={ i‘“‘A} ©)

un

where subscripts n = 1,..., 6 are the case number in Table 1 and A = [A] is the diagonal

eigenvalue matrix of the damped system. Let

{v®} = [Y{q®} )



Table 1. Matrix and Vector Quantities in Eqs. (2) and [X] matrix in Eq. (5)
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where {q} is a new unknown modal coordinate vector. Substitution of Eq. (4) into Eq. (2) and
premultiplication of the resulting equation with [X] in Table 1, there is obtained

{¢’} = [A)q} + XI{F} ©®)

For detailed dynamic equation decoupling procedures and proof of orthogonality see [1-3] for
the standard formulations, A1, A2 and B1, and [1] for the new B2-B4 formulations.

Some Remarks on Various Formulations - It should be noted that the Al and A2

formulations are also applicable to nonconservatively loaded systems in which [C] and [K]
matrices are nonsymmetric, i.c., they contain the antisymmetric nonconservative force matrix
portions associated with gyroscopic and circulatory force components, respectively. Among
various formulations given above, as will be demonstrated numerically later, the best one is the

B4 formulation. This is because, unlike Al or Bl or B2 formulation, no inversion of the



complex modal matrix [Y] or complex normal modes solution of the two-matrix ([A] and [B])
system is required. This is particularly true if the free undamped vibrational modes are first
used to reduce the physical equations of motion to the modal coordinates (in which [M,,] and
[Kyf] are diagonal matrices).

(b) Case with Rigid-Body Components of Motion
In the presence of rigid-body components of motion, one superimposes the rigid-body motion

with the nonrigid-body (elastic) parts given in the above formulations, i.e.,

{u} = R)1} + [Y.}{q} (6a)

where

[R], {r} = the rigid-body parts of eigenvector matrix and modal coordinate subvector

{r} = the rigid-body part of modal coordinate sub-vector

[Y.l, {g} = the nonrigid-body (elastic) parts of eigenvector matrix and modal coordinate
subvector (cf. Table 1) (with n=1-6).

It is readily shown that

{r"} = RI"{P} (RI'[R] = ) (6b)

B. Analytical Frequency Response Solution
With all governing equations decoupled using one of the formulations given above,

calculation of frequency responses {u*} is reduced to a trivial operation of inverting a diagonal

system matrix, i.e.,

{us} = [RI{r,} + [Y,){q.} (72)
{ra} = [R]T{PA}/C"f2 (7b)
{aa} = (oll] - [AD'[XH{F,} (7¢)



where o is the excitation frequency and quantities with subscript A (say, {g,}) represent the

amplitude quantities in the expression

{g} = {eade* (&} = {u}, {1}, {q}, (P}, {F}) (7d)

3. CMODSTAN COMPUTER CODE SYSTEM

The forgoing algorithm sets have been implemented into a general purpose computer code
system, CMODSTAN (Complex MODal STructural ANalysis) on the VAX 11/780, Micro
VAX, and Multiflow Trace 7/200 computer systems. This system consists of the following
modular codes:

1) MSC/NASTRAN - This computer code is used for generating/assembling the FE
method-based system physical and modal structural stiffness, damping and mass
matrices and also optionally used in postprocessing, such as curve plotting.

2) CMODEAN - This newly developed modular code is for extracting complex
normal modes and decoupling the equations of motion. It uses EISPACK
eigensolution subroutines [5] to perform the former task. It is capable of
performing the decoupling task via any one of six formulations in Table 1.

3) FRESAN - This modular code is newly developed for frequency response analysis
and curve plotting using the output data from CMODEAN.

4) TRESAN - To be developed for transient response analysis.

The FRESAN computer code module also possesses a capability of computing the resonant
(absolute and relative maximum) frequency response values and/or response values at specified
incremental frequency points. Because of this capability, a much larger incremental frequency
size than that required for a MSC/NASTRAN computer run can be used to obtain adequate
response results and curve plots so that significant computational time and cost can be saved.
It also has an optional feature of returning to MSC/NASTRAN to perform transfer function
plots. Figure 1 contains a macro flow chart of this system. Development of the transient
response analysis module, TRESAN, has not yet been completed.
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Fig. 1. Macro Flow Chart for the MSC/NASTRAN-Interfaced,
Modular Type Code System, CMODSTAN

4. NUMERICAL VERIFICATION AND BENCHMARKING STUDY

A. Statement of the Benchmarking Example Problem

Consider a free-free system composed of two box subsystems that are joined together via
viscoelastic connectors (Fig. 2). Each box structure is fabricated from aluminum honeycomb
panels, which are reinforced with aluminum ribs at its edges and three-axis center line locations
of both top and bottom panels. An additional cantilever member is a graphite composite tube.
All masses are lumped at 75 grid points so there are 225 translational dynamic degrees of
freedom.

In addition to the viscous damping induced by the viscoelastic connectors, it is assumed that
0.5% critical modal damping is also presented in the system. The source of sinusoidal
disturbances is located at the geometrical center point of the left top box (box A).



Fig. 2. Viscoelastic Connector Joined, Two-Box Type Dynamic Structural System

B. Numerical Verification of CMODSTAN Code Algorithms and Solution Accurac

The CMODSTAN code system was used in solving both the complex modes and frequency
response problems of several non-proportionally damped systems, including that of the
benchmarking problem (Fig. 2) described above. This was accomplished by comparing the
numerical results of several example problems (ranging from N, = 36 to 225 dynamic or modal
degrees of freedom systems with non-proportional damping), with those using "Superelement
Modal Frequency Response" solution sequence (SOL 71) of MSC/NASTRAN.

Figure 3 shows the CMODSTAN and MSC/NASTRAN generated frequency response
transfer function results for an over-damped case, designated as the damping level 3 (DL-3)
case, using the entire 225 modal vectors.

Almost exact correlation of results are seen, except for the first peak response. This
relatively large deviation of the MSC/NASTRAN result from the "exact” CMODSTAN result

occurred due to use of an inadequate (too large) frequency incremental step size in
MSC/NASTRAN.
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Fig. 3. Correlation of CMODSTAN- and MSC/NASTRAN-Based
Frequency Response Analysis Results

C._Computational Efficiency Benchmarking Study Results

(a) Complex Normal State Modes Analysis/EOM Decoupling Operation Case
The CMODEAN module code of the CMODSTAN code system was used in extracting

complex modes and decoupling (system coefficient matrix diagonalization) operations of the
modal equations of motion for the example problem. In all cases, the physical and modal
dynamic systems used are heavily and nonproportionally damped. The modal structural matrices
were generated through use of MSC/NASTRAN.

Table 2 lists the CPU time results for performing the complex modal extraction and
decoupling of the modal equations of motion. It is seen that the newly formulated computational
algorithm set, B4 in Table 2, is computationally most efficient. It is roughly two and four times

as efficient as the standard A1l and Bl algorithm sets (formulation), respectively. It is also the



Table 2: VAX 11/780 Model Computer CPU Time Required by Complex Normal Mode
Calculations and Dynamic Equation Decoupling Operations

Formulation No. VAX 11/780 CPU Time (min.)
30 MODF 60 MODF 100 MDOF | 150 MDOF | 200 MODF
Al 0.78 4.36 - - -
A2 0.82 5.43 - - -
Bl 1.54 9.92 62.89 - -
B2 1.33 9.16 - - -
B3 25.73 - - - -
B4 0.47 2.78 14.30 43.73 112.29
B4 Multiflow Trace 7/200 CPU Time for the 225 MDOF case: 7.3 min.*
Notes:

1. Here all Ny, = MDOF listed correspond to non-ridged body degrees of freedom. Actual degrees of freedom
used in the frequency response analysis are whatever is listed plus 6.

2. Various appropriate EISPACK subroutines were used in complex eigenmodes extractions.

3. All CPU times given here correspond to an over-damped system case. Somewhat smaller CPU times are
required for the corresponding dynamic system with a moderately or lightly damped condition, e.g., 36.93
minutes were also obtained for 94 and 194 MODF cases, respectively, using B1 algorithm on an IBM 3084
model computer.

*  In comparison, MSC/NASTRAN required 22.7 and 22.4 min. to obtain complex eigensolution alone using
the SOL 67 and SOL 70 solution sequeces, respectively on the Multiflow system.

most economical in core space usage because it only needs to store two (2Ny x 2N,) (Ny =
number of modal degrees-of-freedom) expanded matrices, [B] and [Y,], as opposed to requiring
storage of three (2Ny, x 2N, matrices, [A], [B] and [Y,], for using the B1 and B2 formulations.
It was also found that MSC/NASTRAN required three times the CPU time in just obtaining the
complex eigensolution alone compared with the CMODEAN code in performing both the
complex eigen analysis and equation decoupling operation for the 225 MDOF system on the
Multiflow system.

Among the various formulations, the worst case from both computational time and core
storage viewpoints belongs to the newly formulated B3 algorithm subroutines because coefficient
matrix [B] is complex. However, this type of formulation should be better than any other type
if [Ky] (modal stiffness) is inherently complex-valued, e.g., in the case that structural damping

is present, or a complex component mode synthesis technique is used in assembling system the
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coefficient matrices of the equations of motion [6]. As can be predicted, the CPU times based
on the A2 algorithm (formulation) are approximately twice those based on the B4 algorithm
because of repeated calculations of complex eigenvalues and eigenvectors for the latter case.
For the general case (i.e., coefficient matrices are non-symmetric), the computational algorithm

set for the Al formulation is predictably better than that of the A2 formulation.,

(b) TFrequency Response Analysis Case

Table 3 shows the CPU time results for the frequency response portion alone and overall
response analysis using the successive modal transformation approach in which the real modal
displacement method (MDM) is first used to transform the physical system to a modal system
and the latter solved using the equation decoupling/modal superposition techniques. Also shown
are the corresponding MSC/NASTRAN CPU time results on both Multiflow and VAX systems
using the conventional real modal transformation approach (SOL 71). The speed-up factors for
CMODSTAN versus MSC/NASTRAN are seen to be more than 1000 and 72 for the
frequencyresponse calculation and overall response analysis, respectively, on Multiflow. An

additional significant (several time) increase in the speedup factors of CMODSTAN code over -

Table 3. Multiflow Trace 7/200 and VAX 11/780 CPU Times for Frequency Response
Calculations of a Nonproportionally Damped 225 DOF Dynamic System

computer total and breakdowns of cpu times consumed in various cpu time ratio (vs.
code or computational modules/elements cmodstan2’s)
code
system msc/nast. phys. cmodean freq. resp. sol. tot. time freq. resp. entire
& modal struct. eigensol./EOM (time/points) for 2111 cale. only analysis
matrix cale. decoupling pis.
multiflow 78 s - 3888.4/20 11.35 1036 72
msc/nast. = 19.35 s/pt hrs.
multiflow! 80 s 451s 21.08/2111 0.153 0.53 0.97
cmodstanl = 0.00998 s/pt hr.
multiflow! 80 s 451 s 39.5/2111 0.158 1 1
cmodstan2 = 0.0187 s/pt hr.
vax 1605 s - 1101.87/4 162 14,730 1022
msc/nast. = 275.47 s/pt hrs.

1. The CMODSTANI1 case calculated a single (fifth) response component only while the CMODSTAN?2 and MSC/NASTRAN

cases calculated all 6 displacement response components at the cantilever tip point.
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MSC/NASTRAN can be easily realized in solving a real world problem because of ability of
CMODSTAN and the inability of MSC/NASTRAN to exactly pinpoint and calculate the peak
(relative maximum or minimum) response quantities, respectively. Without such
ability/capability, a (or a set of) sufficiently small excitation frequency step size(s) is usually
needed by MSC/NASTRAN to obtain adequate response solution.

It should be noted that the speed-up factors of CMODSTAN versus MSC/NASTRAN shown
in Table 3 will increase or decrease according to whether the number of frequency response
solution points are increased or decreased from the 2111 points used to cover undamped
eigenfrequency range (10 to 6450 Hz). The 2111 excitationfrequency points were determined
automatically by CMODSTAN to include all natural eigenfrequency points (i.e., candidate peak
response points) and ten equally spaced frequency steps between each pair of two successive

natural frequencies.

C. MDM Reduced-Order Method Based Solution Convergence Pattern vs. No. (N,,) of Lowest
Modes Used in Dynamic Analysis of the Heavily/Overly, Nonproportionally Damped System

Also studied were the convergence patterns of the MDM reduced-order method with respect
to as variations in damping level (DL) and number (N, of the lowest undamped vibration modal
vectors (reduced basis vectors). Figures 4A and 4B show the results for an over-damped
(DL =3) condition with critical damping ratio of approximately 50. It is seen that steep jumps
in peak frequency responses occur as N, is increased from 213 to 214, and also from 215 to
216. The total jump in response from Ny = 213 to 216 is 165%. A similar jump (or steep
response increase) was also observed for a critical damping ratio of approximately 5. To obtain
a correct (convergent) solution for the peak responses, N, = 216 out of a total of 225 modal
vectors were required as the reduced basis vectors. Even if one uses the conventional cutoff
frequency criterion of mode selection that is 3 times the excitation frequency of 134 Hz (i.e. 400
Hz), the number of modal vectors selected as the reduced basic vectors would be 136. The
corresponding two peak responses are seen from Fig. 4A to be only approximately 40% of the
“exact" value obtained by using the entire 225 modal vectors. Similarly, the conventional mode
participation factor criterion of mode selection would also fail to include all important

eigenvectors (such as the one associated with mode No. 216) required for obtaining an adequate
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solution. Use of the mode acceleration method (MAM) in conjunction with the conventional
mode selection criteria will not solve this problem either because it does not tie the mode
selection procedure to damping values.

It should be noted that a heavily or over-damped system is not uncommon in designs where
passive and/or active damping measures are used to suppress excessive vibrations. As a matter
of fact, the present development work was initiated originally to deal with the design analysis
problem of an actual mechanical damper with a maximum critical damping ratio as high as 50.
This is on the same order as that of the damping level 3 case studied here. Therefore, within
the framework of conventional reduced modal basis vector method, there is a definite need to
modify or reformulate the associated mode selection criteria (if it can be done) so that the
modified (reformulated) criteria would be capable of also selecting those higher undamped
modes associated with the actual, heavily damped modes. Such a mode selection criterion is
being formulated and preliminary numerical test results show its capablility in selecting all
critical modes while drastically reducing the number of modes required for generating correct
(convergent) eigensolution and frequency response (and, thus, transient response) results.

An alternate approach is to use a higher order method (such as the force derivative method

[7,8]) that include damping effects on the reduced-order modal vectors.

5. CONCLUDING REMARKS

Six formulations/algorithms for equations of motion (EOM) decoupling and frequency
response analysis of nonproportionally damped systems were presented. The implementation of
these formulations into an MSC/NASTRAN-interfaced general-purpose computer code system,
CMODSTAN, was also described. CMODSTAN uses the MSC/NASTRAN code as a module
to calculate the finite element structural and (real) modal structural (mass, damping, and
stiffness) matrices and two newly developed Fortran codes, CMODEAN and FRESAN, for
complex normal modes analysis/EOM decoupling and frequency analysis, respectively. The
CMODSTAN code system was used in assessment of the relative computational efficiency of
the six formulations/algorithm sets. One (B4) of the three algorithms (B2-B4) formulated by the
author for decoupling equations of motion (including the required complex normal modes

analysis) was shown to be computationally four times as efficient as the standard (B1) algorithm

14



while requiring only a two-third of computer memory.

The superefficiency of the CMODSTAN code system versus MSC/NASTRAN in both
complex modes and frequency response analyses was demonstrated using a nonproportionally
damped elastic system with 225 dynamic degrees of freedom. The speed-up factors were found
to be three for the complex modal extraction portion, 1000 for the frequency response
calculational portion, and 70 for the overall (entire) frequency response analysis. In addition,
the mode displacement (reduced-order) method (MDM) based complex eigensolution and
frequency response convergence patterns were studied as functions of both excitation frequency
and number of the lowest free undamped vibration modes used. It was found that the MDM
based solution of the example problem, in conjunction with using the conventional mode
selection criterion, failed to yield an adequate solution for at least the critically or overly damped
cases studied. In the latter case, the 216 lowest modes of the 225 model were required to
obtain an adequate frequency response solution. Use of the mode acceleration method (MAM)
will not accerate solution convergence either. Therefore, in using MDM or MAM based
dynamic structural analysis computer codes, such as MSC/NASTRAN, caution should be
exercised for dynamic analysis of a heavily or overly damped systems. Here, formulation of
a new mode selection criterion is needed. Alternately, use of a higher order modal reduced-
order method should be made. Initiation of extending CMODSTAN to include such capabilities

are being made.
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