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ABSTRACT

This paper demonstrates important factors for the application of mode-superposition meth-
ods and component mode synthesis to transient response analyses of large structures. A the-
oretical review is presented and numerical results are evaluated for three case studies. Data
recovery techniques based on the mode-superposition method are evaluated with respect to
different types of force input, model reduction, model size, and computational resources.
Cutoff frequency selection at the component- and system-level of component mode synthe-
sis is discussed for accurate dynamic response calculations. This paper not only shows the
theoretical differences between different data recovery methods, but also provides physical
insights at each computational stage.
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INTRODUCTION

Transient response analyses for large structures widely utilize the mode-superposition method
and component mode synthesis to calculate the dynamic load responses. Both techniques
offer the advantage of reducing the computational resources necessary to handle large prob-
lems. Mode-superposition methods transform the equations of motion for a multi-degree
of freedom (dof) system into a set of single dof problems which can easily be solved. In
most cases, the size of the problem is also reduced by retaining only a subset of the normal
modes. These methods vary in the recovery of response data from the modal solutions, which
can significantly affect the results under certain loading conditions and reduction methods.
Component mode synthesis (CMS) analyzes and reduces the structure in components before
assembling them into a system model whose size becomes much smaller than that of the
original model. Accuracy of the dynamic response results is dependent on the number of
modes retained in the component- and system-level analyses.

Transient response analyses for the Space Station Freedom (SSF) have a unique combi-
nation of factors which lead to the use of these computational reduction techniques. Finite
element models of the SSF structure are extremely complex and may contain millions of dofs
if not reduced. The spacecraft can easily be broken into distinct components due to the na-
ture of its assembly and the number of appendages such as photovoltaic (PV) arrays. Model
reduction through CMS, in conjunction with mode-superposition methods, can effectively
reduce computer resources. Dynamic characteristics and complexity of the force input as
well as the SSF models vary for each analysis case. Thus, data recovery and model reduction
methods must be selected on a case-by-case basis to improve accuracy and at the same time
minimize computational effort.

Performance of the mode-superposition methods and component mode synthesis is closely
related to the dynamic characteristics of the loading and structure. Improper selection of
the data recovery methods can substantially under- or over-predict structural responses,
or lead to computational inefficiency. Neglecting critical component modes can prevent a
complete description of the dynamic behavior of the entire system. This paper will discuss
the theoretical background of the methods before examining three case studies to illustrate
key points of their implementation and to give physical insights at each computational stage.

THEORETICAL BACKGROUND

In this section, a brief theoretical background for data recovery and model reduction methods
is presented to provide a basis for discussions in the following sections. A detalled discussion
in this area can be found in References [1, 2, 3].

Mode Displacement Method

Consider an undamped linear n-dof dynamic system whose motion can be described by a set
of n differential equations:

Me(t) + Kz(t) = f(t) 1)
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In general, these equations of motion are coupled such that simultaneous solution for n
unknowns in n equations would be required to directly solve the problem.
By introducing the coordinate transformation, i.e. using the mode-superposition method

w@=®ﬂﬂ=é¢wm (2)

the equations of motion can be expressed in terms of principal coordinates, 7;(t)

Miy(t) + Kn(t) = p(t) (3)

where

M=0"TM®, K=0TK®, and p(t)=oTf(t) (4)

Modal mass and stiffness matrices, M and K in Equation 4, become diagonal matrices due
to the orthogonality condition. Therefore, the equations of motion for a n-dof system are
transformed into a set of n decoupled, or single dof, differential equations.

Once the modal response time histories of 5;(¢) are calculated, the system response of
x(t) can be obtained by mode superposition:

2, () = S bami(t) (5)

i=1

This process of reconstructing the physical coordinates from the modal coordinates is called
data recovery. Equation 5 is called the mode displacement method and gives the exact
solution when all n modes are included. However, transient response analyses for large
structures often include only m (<« n) modes to reduce computer time and storage, resulting
in approximate solutions. If the number of modes, or cutoff frequency, is carefully chosen
based on the dynamic characteristics of the structure and input force, effect of the truncated
modes can be minimized.

The mode-superposition method can still be employed for a dynamic system with pro-
portional damping which satisfies the orthogonal condition, i.e. the modal damping matrix
is diagonal. For a system with general linear damping, the same procedure can be used after
transforming the equations of motion from second-order into first-order differential equa-
tions.

Mode Acceleration Method

When only a part of the modes are included and input force is dominated by pseudo-static
loading, the mode displacement method may fail to give an accurate solution. This phe-
nomenon can be illustrated by assuming a system with the solution in the form of (Figure 1):

z,(t) = Asinw,t + B (6)

The mode displacement method requires many modes to represent the static contribution
which is a step function, although dynamic contribution of the solution can be described by
only one mode.



The mode acceleration method [1] improves the accuracy of the mode-superposition method
by solving static and dynamic contributions of the solution separately, i.e.

z () = [KTf(t)] + [-K'Mi, @)

= [krw)] o+ [— i@ﬁe(t)/w?J (M

static part dynamic part

The pseudo-static part is calculated like other structural problems, at each time step, while
the dynamic part is calculated by a regular mode-superposition method equivalent to the
mode displacement method. Then the total system response is determined by combining the
two solutions. For the previous example, the mode acceleration method requires only one
mode to calculate an accurate solution regardless of the static part. It is noted that, however,
this method gives the same results as the mode displacement method for the dynamic part
of the total responses, thus it does not reduce the number of modes required to represent
the dynamic contributions.

When the structure contains rigid body modes, the stiffness matrix of K in Equation 7
becomes singular, which prohibits inversion of the matrix. This problem can be resolved, for
example, by a coordinate transformation which decouples Equation 1 into r-dof rigid and
e-dof elastic dynamic equations, where n = r 4+ e. The elastic dynamic response can now
be determined because the corresponding system becomes constrained with respect to the
selected rigid dofs, i.e. the corresponding stiffness matrix is non-singular.

Residual Flexibility Method

The mode acceleration method is more computationally expensive than the mode displace-
ment method because the pseudo-static response must be calculated at each time step. An
alternate data recovery method is the residual flezibility method [2] which adds the residual
flexibility vectors to the mode displacement method, i.e.

m k
TL(t) = ;d)ini(t) + ;lz’.@(t) (8)

The residual flexibility vectors of 4, are static solutions to unit loading at the force input
points and improve the accuracy of static contribution in the mode displacement method. It
is an efficient method since the data recovery procedure is equivalent to the mode displace-
ment method once a few static problems are solved. Since the static vectors are dependent on
the force input and/or output points, the computational advantages may be diminished when
numerous combinations of forcing functions and model configurations must be analyzed.
Lanczos vectors have also been employed to improve the accuracy of static contribution to
the solution [4].



Component Mode Synthesis

In component mode synthesis, once the system-level response time histories are calculated
by the mode displacement or mode acceleration method, the solution for the unreduced
component can be obtained by the transformation:

z,,(t)=He,(t) and &,,(t) = Hé,(t) (9)

,,(t) = He,(t) and &,,(t) = H&,(t) (10)

where H is a transformation matrix between the original component dofs, interior plus
boundary coordinates, and the retained component dofs in the system-level analysis, bound-
ary coordinates, for each component. These transformation matrices consist mainly of nor-
mal modes and constraint modes in the Craig-Bampton CMS method [5]. A constraint mode
is defined by statically imposing a unit displacement on one physical boundary coordinate
while all other boundary coordinates are constrained. The component normal modes are
obtained by solving an eigenvalue problem for the component model represented by interior
coordinates, resulting in fixed-interface normal modes. A general CMS approach uses mixed
boundary normal modes.

When the system-level responses are calculated by the mode acceleration method, com-
ponent responses can also be obtained by the same method to improve the accuracy. This
is shown in its implicit form [3]:

2 = [KI£0] + K M (1)
+ [terms of K., M., x,,(t), and & ()] (11)
static part dynamic part

Although this approach of using the mode acceleration method at both system and com-
ponent levels improves the accuracy, the computer time and storage required for transient
response analyses increases dramatically. The residual flexibility method can also be em-
ployed in data recovery for the component responses.

CASE STUDIES

Three case studies were conducted to illustrate the performance and computational effort
of different data recovery and model reduction methods. A simple beam model was first
employed to determine the impact of truncated modes and data recovery methods. The
complex structure of the SSF SC-2 configuration was then used to evaluate the impact of
model reduction (including component model reduction and mode truncation) as well as data
recovery methods. Three different configurations of the SSF were used to assess the computer
time and storage requirements. These study results were computed using MSC/NASTRAN
on a Cray XMPEA-464 supercomputer, Direct Matrix Abstraction Programs (DMAPs), and
in-house post-processing/database programs.



Free-Free Beam Model

A plane bending free-free beam model was employed to evaluate the data recovery methods
in transient dynamic response analysis. Figure 2 shows a uniform 200 in. beam which has
two rigid body modes and is modeled by 40 bar elements. Step forcing functions were
used to maximize the static contribution anticipated in the solution. Free-free boundary
conditions were imposed to require consideration of the rigid body modes. The beam was
loaded with a 10 lb. load at the midpoint and two 5 lb. loads at each end to maintain static
equilibrium. Three data recovery methods were evaluated, including mode displacement,
mode acceleration, and residual flexibility methods. Dynamic responses were calculated
using 3, 10, 15, 20, 30, 40, and 50 modes, with each including two rigid body modes. Modal
contribution for the mode displacement method was also calculated.

Figure 3 illustrates the effect of truncated modes on both static and dynamic contribu-
tions to the total response. Figure 4 shows typical time history and modal contribution plots
for shear force responses at the center of the beam. The mode acceleration method produced
superior total response results to the mode displacement method in the case of force input
with a large static contribution. The dynamic part of the total responses was comparable
for both methods, since 15 modes were needed to accurately calculate it. However, the static
part was drastically different, as the mode displacement method required 50 modes for an
equivalent accuracy compared to the mode acceleration method result with no elastic modes.
The modal contribution plot for the mode displacement method in Figure 4 supports the
conclusion by showing significant contributions from the higher modes to represent the static
part. The residual flexibility method was comparable to the mode acceleration method as it
required 10 modes (2 rigid body modes, 5 elastic modes, and 3 residual vectors) to determine
the static part of the response.

As shown in Figures 5 and 6, however, the mode displacement method produced accurate
results for bending moment responses because the static part to the total response is not
significantly greater than the dynamic part.

SSF SC-2 Configuration

Free-free beam study results were re-evaluated using a more complex structural model. Fig-
ure 7 shows a finite element model of the SSF SC-2 configuration which consists of three
truss segments, two PV arrays, one Solar Array Rotary Joint (SARJ), and a heat rejec-
tion radiator. Each component was reduced by component mode synthesis primarily with
fixed-interface normal modes and a few mixed boundary modes. The cutoff frequency var-
ied between components. A 10-second pulse was applied at three truss points to maintain
static equilibrium. This force input may not be realistic, but it served to demonstrate data
recovery and model reduction issues on the complex structure. Only the mode displacement
and mode acceleration data recovery methods were evaluated because the current DMAP for
the residual flexibility method could not accommodate the mixed boundary conditions. Two
different system-level cutoff frequencies of 5.0 Hz and 15.0 Hz were used to determine the
effect of truncated modes on the accuracy. All three truss sections were included in the sys-
tem model with and without reduction to evaluate the data recovery at the component-level,



since MSC/NASTRAN implements the mode acceleration method only at the system-level.

Table 1 represents the maximum loads at several locations with the system cutoff fre-
quency of 5.0 Hz. There are four cases with a combination of two different data recovery
methods and two different truss reductions. Cases in Table 2 are equivalent to those in
Table 1 except that the system cutoff frequency is 15.0 Hz. In general, there are significant
differences between Case A results and corresponding Case B results, e.g. PV array mast
base loads. This leads to a conclusion that system modes up to 15.0 Hz should be used to
accommodate dynamic effects of the rectangular pulse regardless of data recovery methods.
The impact of increasing system cutoff frequency is minimal considering 202 modes up to
15.0 Hz versus 166 modes up to 5.0 Hz.

The mode acceleration method was superior to the mode displacement method as shown
by a substantial increase in the maximum loads even with the higher system cutoff frequency
(Table 2). Truss reduction did not alter the results significantly (differences in cases with
the mode acceleration method was not greater than those with mode displacement method).
Therefore, using the mode acceleration method only at the system-level, but not at the
component-level, was adequate for this case. It is noted that, for the truss interface axial
loads, total responses were dominated by the static part as shown in Figures 8 and 9. As a
result, different data recovery methods made more differences in the maximum loads than
different cutoff frequencies. For the PV array mast base bending moment that was dominated
by its dynamic part, however, a higher cutoff frequency of 15.0 Hz was necessary as shown
in Figures 10 and 11.

Computer Resources

The computer resources for the mode displacement and mode acceleration methods were
compared using SC-2, SC-7, and SC-17 configurations of the SSF. These configurations
provide a variety of problem sizes ranging from 21,000 to 70,000 dofs. A relatively simple
forcing function which simulates an astronaut pushoff during extravehicular activity was used
for all cases. CPU time, I/O time, and database size were determined for the eigenvalue
analysis, modal response analysis, and data recovery parts of the computation (Table 3).

The eigenvalue analyses used comparable levels of computer resources for both data
recovery methods, as expected. However, the modal response analysis and data recovery
showed substantial increases in computer resources used by the mode acceleration method.
The differences became more significant, especially for the data recovery part, as the size of
the model increases.

CONCLUSIONS

Issues surrounding the transient response analysis of large structures were addressed in-
cluding data recovery and model reduction. Theoretical background was briefly provided
for the mode displacement, mode acceleration, and residual flexibility methods. Three case
studies were presented to demonstrate the important factors for the application of the mode-
superposition method and component mode synthesis.



The mode acceleration data recovery method provided superior results to the mode dis-
placement method in the case of force input with a large static contribution. However, the
mode acceleration method required substantially more computer resources. It is noted that
the number of modes retained in mode superposition should be determined by the frequency
contents of the forcing functions regardless of data recovery methods. When forcing func-
tions have large static loading contributions, additional modes are required for the mode
displacement method to obtain accurate results. Choice of data recovery methods for ac-
ceptable accuracy and computational efficiency is highly dependent on the nature of forcing
functions and models to be analyzed. In component mode synthesis, using the mode acceler-
ation method only at the system-level was adequate with a careful selection on the type and
number of component modes. The residual flexibility data recovery method showed promise
in achieving accuracy equivalent to the mode acceleration method, but with fewer computer
resources comparable to the mode displacement method.
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Figure 1. Mode Displacement vs. Mode Acceleration Method.

Figure 2. A Free-Free Beam Model and Forcing Functions.
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Cases

Al

A2 A3 A4
Truss Component Reduction Yes No Yes No
System DOFs 522 4327 522 4327
System Cutoff Frequency, Hz 5 5 5 5
Number of System Eigenvalues 166 166 166 166
Data Recovery Method Mode Disp. Mode Disp. Mode Accel. Mode Accel.
SARJ Axial Loads, Ib 65.6 65.8 52.1 51.8
$2-83 Truss Interface Axial Loads, Ib 205 205 825 825
MT/ITA Interface Axial Loads, Ib 250 249 143 143
Truss Segment Axial Loads, ib 182 177 1053 858
Bending Moment, in-lb 2679 2669 2624 1797
PV Mast Base Bending Moment, in-Ib 1156 1133 1155 1133
Table 1. Maximum Loads with a 5.0 Hz System Cutoff Frequency.
Cases B1 B2 B3 Ba
Truss Component Reduction Yes No Yes No
System DOFs 522 4327 522 4327
System Cutoff Frequency, Hz 15 15 15 15
Number of System Eigenvalues 202 202 202 202
Data Recovery Method Mode Disp. Mode Disp. Mode Accel. Mode Accel.
SARJ Axial Loads, Ib 94.9 97.4 80.3 85.3
§2-83 Truss Interface Axial Loads, Ib 510 520 923 912
MT/ATA interface Axial Loads, Ib 218 220 169 167
Truss Segment Axial Loads, b 505 425 1094 889
Bending Moment, in-b 3889 3655 2764 2492
PV Mast Base Bending Moment, in-lb 3947 4285 3966 4268

Table 2. Maximum Loads with a 15.0 Hz System Cutoff Frequency.
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Figure 9. The Modal Contribution Plot for Truss Interface Axial Loads.
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Configuration Procedure CPU Time, Sec. /O Time, Sec. Database, Mbytes
MD/MA MD/ MA MD/MA
Eigenvalue Analysis 140/ 141 11/ 111 46.3/463
SC-2 Response Analysis 25/863 80/155 64.5/124
Data Recovery 1053/ 1675 929 /2098 n.a.
Eigenvalue Analysis 288 /286 210/ 212 75.2/76.5
SC-7 Response Analysis 33/106 126/ 255 106 /217
Data Recovery 1735/ 3031 1663 / 3855 n.a.
Eigenvalue Analysis 860 /857 695/700 157 /160
SC-17 Response Analysis 82/367 291 /645 251/507
Data Recovery 1586 /3720 2271/ 4465 na.

MD/MA: Mode Displacement Method / Mode Acceleration Method

Table 3. Computer Resources for SSF Transient Response Analyses.

16




