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Abstract

A method of dynamic substructuring is presented which utilizes a set of static Ritz vectors as a replacement
for normal eigenvectors in component mode synthesis. This set of Ritz vectors is generated in a recurrence
relationship, which has the form of a block-Krylov subspace. The initial seed to the recurrence algorithm is
based on the boundary flexibility vectors of the component. This algorithm is not load-dependent, is
applicable to both fixed and free-interface boundary components, and results in a general component model
appropriate for any type of dynamic analysis. This methodology has been implemented in the
MSC/NASTRAN normal modes solution sequence using DMAP. The accuracy is found to be comparable to
that of component synthesis based upon normal modes. The block-Krylov recurrence algorithm is a series of
static solutions and so requires significantly less computation than solving the normal eigenspace problem.
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Introduction

Component mode synthesis is a methodology for analyzing large structures by separating them into smaller
components, which can then be recombined to analyze the entire system. This methodology has become well
established and widely used in structural dynamic analysis. The advantages of component mode synthesis
include, the lower computation costs associated with the smaller components which are analyzed, and the
flexibility of data management gained by working with the discrete components.

The typical component mode synthesis algorithm is briefly described [1]. A large structure is broken into
components, with each component having a set of boundary, or interface, points. At these interface points,
fixed or free boundary conditions are assumed, and a corresponding set of component normal mode shapes,
or eigenvectors, is determined. The eigenvectors are augmented by a set of modes which are associated with
the component’s boundary flexibility. Depending on whether a fixed or free interface is selected, these modes
are the constraint modes or the attachment modes, respectively. The combined set of component normal
modes and boundary modes are used to represent the component in subsequent system analysis, by using the
following transformation process. The combined set of modes form a coordinate transformation matrix which
transforms the physical coordinates of the structural model into a combination of modal coordinates and
boundary coordinates. The boundary coordinates are retained in the physical space, so they can be used to
couple the components for subsequent system analysis.

A component’s size, although smaller than that of the complete structural model, can still be large enough
to make computation expensive. The rapid reduction in cost per calculation in today’s digital computers has
not necessarily led to a reduction in total computation cost, Instead, engineers have exploited the increased
computational resources by creating larger structural and component models. The larger models have allowed
for more structural details to be included, as well as more refined data recovery, but they may be expensive
to formulate and analyze. In order to reduce the computational cost associated with large component models,
it is desirable to develop more efficient methods of formulation. Since the solution of the normal eigensystem
problem requires the largest computational effort in component formulation, it is logical to develop alternate
methods which circumvent the eigensystem solution entirely.

A method, which does circumvent the eigensystem solution, has been defined in literature and is briefly

described [2-4|. The boundary flexibility modes, specifically either the same constraint modes or attachment
modes that were mentioned previously, are multiplied by the component mass matrix to create a force matrix.
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Static analysis is then performed, using this force matrix and the component stiffness matrix, to obtain a
matrix, or block, of vector displacements. A recurrence relationship of matrix multiplications, which have been
shown to be a Krylov sequence [3,5], then defines a series of matrices, or blocks, of vector displacements. The
calculated vectors are orthogonalized, using normalized Gram-Schmidt orthogonalization [6]. These vectors,
which can also be thought of as static modes, replace the normal modes in the component formulation
methodology. Because the vectors are calculated in blocks and are based on a Krylov sequence, the subspace
defined by these vectors is called a block-Krylov subspace.

The primary contribution described in this paper is the incorporation of the above methodology into
MSC/NASTRAN. Since the block-Krylov vectors replace the normal modes in typical component mode
synthesis, the physical to modal coordinate transformation, the constraint modes, and the attachment modes,
are not changed. Therefore, the component mode synthesis formulation currently available in
MSC/NASTRAN was utilized, except for the substitution of the normal modes by the block-Krylov vectors.
In addition to the contribution described above, the technique of using Gram-Schmidt orthogonalization
within each vector block was added to the methodology.

Problem Definition and Theory

Overview

Wilson, Yuan, and Dickens [7] originally proposed the use of Ritz vectors, based upon external loading, for
structural dynamic analysis. This formulation reduced an entire structure, not a component. The algorithm
begins with a set of externally applied loads. The displacements from the static solution to the applied loads
become the initial Ritz vector. That vector is then multiplied by the mass matrix to become the next force
vector. This sequence is repeated to form a recurrence relationship. This recurrence relationship is used in the
papers discussed below and throughout this work.

Nour-Omid and Clough [5] investigated Wilson, et al.’s methodology and found that the proposed recurrence
relationship was actually a Krylov sequence. A Krylov subspace of order j is a vector space defined by

(¢,A4,A%9,...,AI 7 g (1)

where ¢ is a column vector and A is a square matrix. If A is n X n dimensional, and if j = n, the Krylov
vectors span the n-dimensional space [3], and an exact solution can be produced. In structural dynamics, the
Krylov subspace can be defined by the following sequence,

[, K" IMr, (K *M)%r, ... (K 1M) 1y (2)

where K is the stiffness matrix, M is the mass matrix, and r is a starting vector (or in block-Krylov, a set of
vectors). This Krylov sequence is identical to the Lanczos eigenvalue extraction algorithm, when applied with
complete orthogonalization with respect to both the mass and the stiffness matrices.

The use of Krylov vectors was shown to be applicable to component mode synthesis by Wilson and Bayo [8].
The Ritz vectors calculated were based, once again, upon an external load. Only a formulation for components
with fixed interface boundary conditions was presented.

Craig and Hale (3], and Abdallah and Hucklebridge [2], demonstrated a methodology applicable to
components with fixed or free interfaces, with or without rigid body modes, and with no applied loading.
Components having no applied external loading were formed using the boundary flexibility matrix, multiplied
by the mass matrix, to form a force matrix. This force matrix produces a set of vectors, which are referred
to as a block. As discussed previously, the boundary flexibility matrix is defined as either the constraint modes



or the attachment modes, depending on whether fixed or free interface conditions are selected. The
methodology contained in these two papers is reviewed in the next three parts of this section. Abdallah and
Hucklebridge also quantified the advantages, in computational effort, that block-Krylov vectors have over
normal eigenvectors.

Yiu and Landress [4] also developed a methodology for forming a component which does not have an external
applied load. However, their formulation is applicable to fixed interface components only. A criteria for
concluding the recurrence sequence, based upon the rigid body mass and flexibility represented by the
calculated Ritz vectors, was proposed.

Fixed Interface Methodology

First, as is standard in component mode synthesis methods, the finite element component mass, m, and
stiffness, k, matrices are partitioned into internal and external degrees of freedom, denoted by subscripts i and
¢, respectively.

m = cc ci (3)
m;, my;
k = kcc kci (4)
kic kii
The constraint modes are defined by
-1
B = -k Ky (5)

which is the same definition used in standard component mode synthesis.

For Wilson’s method [7], a set of externally applied loads is required to obtain the initial set of Ritz vectors.
For the boundary flexibility method, this set of loads is created by multiplying the constraint modes by the
mass matrix. (Craig [3] also included the off-diagonal mass matrix in his formulation.) Since the mass matrix
is used to create the loads, they can be considered inertia loads. This set of inertia loads are then used to
generate the initial set, or block, of Ritz vectors using the following

X

9 k! (my®,, +my) (6)

where the superseript ** indicates that the vectors in the matrix have not been normalized. The first block
of vectors is normalized using the following equation. The subscript r, in the following equation, signifies that
the block is normalized vector by vector, and there are ¢ vectors within each matrix, or block.

* ¥

9,
q1r= r= 1;2:'"’6 (7)
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The subsequent sets of block-Krylov vectors are generated using the recurrence relationship [5,7], which was
defined in Eq. (2},

* -l
q = ki myqp 4 (8)
where the superscript * signifies that the vectors have not been orthogonalized or normalized. The additional
sets of vectors are orthogonalized, with respect to the mass matrix, with all previous vectors. The process used
to perform this orthogonalization is a normalized Gram-Schmidt procedure.

** % *
- - 9
‘lj “qj qQ;-1¢ ( )
where
*
c= ql’j_lT m;q, (10)
and q; -1 is the concatenation of the previous sets of block-Krylov vectors,
9p;-1% [‘11:‘12:---;‘13 _1] (11)
where all vectors have been normalized as follows.
qu* *
r=12,.c (12)

9. =
J(qu* *T miiqu* *)

The complete set of calculated block-Krylov Ritz vectors is included in the transformation matrix as Q- (The
resulting transformation matrix has the same form as that of ? Craig-Bampton” component mode synthesis
[9], with the Krylov vectors replacing the normal modes.)

I 0
g=|c (13)
Qic Ql

The physical mass and stiffness matrices are transformed into the component modal matrices

p=0Tmy (14)
k=UTky (15)
The resulting mass submatrices are
= | (16)
Kl M1
where
=®. T (m.®, +m, }y+m 3, +m (17)
MCC 1c 1~ 1c mlC Cl™ 1C CcC
=p. T=QF (18)
B =g =Qp (0@ +my,



T
pu =1y = Q myQy
The resulting stiffness submatrices are

cc cl

Kle Ry

where

K = kciq> et kcc
= T
Ka] = =0

c cl

T
fp = Ql k;Q

(19)

(20)

(21)
(22)

(23)

The use of constraint modes in the transformation matrix leads to the null off-diagonal partitions of the

component stiffness matrix, just as in the approach based upon normal modes.

Free Interface Methodology for Components with No Rigid Body Modes

When allowing the interface points of a component to be free to deflect while forming the component, a
somewhat different basis for the initial vector of the Krylov algorithm is required. The attachment modes,
rather than the constraint modes are utilized in initial block definition. By definition, the attachment modes

are the columns of the flexibility matrix which correspond to the interface degrees of freedom.

g=k'
gcc
By, T
€ic
The initial block of vectors in the free interface formulation is defined as

ql*:« - k_lmga

and is normalized as follows.

(26)

(27)

Note that the unpartitioned physical mass and stiffness matrices of the component are used in the free
interface formulation. The recurrence algorithm then proceeds in the same manner as in the fixed interface

methodology.



qj* =k—1mqj_1 (28)

& =g g (29)
c= ql,j—leqj* (30)
* %
q;,
4 - r=1,2..c (31)
(qu# * T m qu* *)

Formation of block-Krylov component then follows the normal component mode synthesis techniques which
were presented by MacNeal [10] and Rubin [11]. To combine the ”Rubin-MacNeal” method with the presented
method, the normal eigenvectors are simply replaced with the block-Krylov Ritz vectors, as in the fixed
interface methodology. The free interface methodology uses residual flexibility terms, which fully define the
stiffness missing from the modal space due to excluded modes and are described below. The flexibility
contained in the calculated Krylov vectors is given by the following equation.

g = Qu(QkQ) Q" (32)
The unrepresented flexibility, or residual flexibility, is defined as
Ba =88 (33)

The residual flexibility matrix is then partitioned in the same manner as the flexibility matrix was in
Eq. (25), when the attachment modes were created for initial vector calculation. The result is the residual
attachment modes.

Becy

5= (34)
gicd

When the residual attachment modes, g, 4, are added to the Krylov modes, Q,; the complete flexibility of the
component is represented.

The residual attachment modes and the Krylov modes are used to form the component transformation matrix.
This matrix transforms the physical subspace, u, to the modal subspace, p, and is defined by the following
equation.

uc‘ gccd ch Pe ) (35)
y Bic, Qjlm

In order to provide physical interface degrees of freedom, for use in component coupling, P in the above
equation is back-transformed to eliminate it from the right-hand side of the equation. This results in the
following transformation matrix,



ol c (36)

where

-1
gic* = gicdgccd (37)

-1
Q" = Q- i, B, Qi (38)

The transformation of the component mass and stiffness mgtrices then proceeds in a similar manner as shown
in Egs. =|‘(14) to (23), with the following differences. The Q,; matrix partition replaces the Q, matrix partition.
The g;, matrix partition replaces the @, matrix partition. In the fixed-interface methodology, the definition
of the constraint modes, @, , leads to terms in the component stiffness matrix which cancel out. In the free-
interface methodology, the definition of the transformation submatrices has changed and so this cancellation
does not occur. Therefore, Egs. (21) and (22) are replaced by the following equations.

* +kic) +kcigic* +k (39)

T
Kee gic* (k‘ cc

i Bic

and

* T
Kic = '“ch = Qn (ki@ +ks) (40)

Free Interface Methodology for Components with Rigid Body Modes
When a component has rigid body modes, the associated stiffness matrix is singular. The inverse of the
stiffness matrix, the flexibility matrix, cannot be directly obtained, and therefore the attachment modes
cannot be directly obtained. To circumvent this problem, Rubin [11] presented the following method for

obtaining the residual elastic attachment modes of a component with rigid body modes.

First, the stiffness matrix is constrained from rigid body motion by partitioning out r degrees of freedom,
where r is the number of rigid body modes.

- kww kwr (41)
k k

TW T

The remaining partition is then inverted.

8‘VW = kww_l (42)

This flexibility matrix is then expanded back to n {w + r) size.
Sww owr (43)

A square projection matrix is defined by



A=1_ -m& 3T (44)

where @ is the rigid body modes matrix. The elastic flexibility matrix, g o With rigid body motion removed,
is shown in reference [11] to be

g, = ATgc A (45)

Now the analysis proceeds in a similar fashion to the previously discussed methodology of the free interface
component with no rigid body motion. The major difference between the two approaches is that the elastic
flexibility matrix is used in place of the general flexibility matrix. The inertia relief attachment modes are

ol (46)

The initial block of vectors is calculated using the inertia relief attachment modes and the clastic flexibility
matrix.

ql* *= g.m gae (47)

The subsequent block-Krylov Ritz vectors are calculated, orthogonalized, and normalized as shown in
Egs. (28) to (31). The residual elastic flexibility terms are also calculated as shown in the free interface with
no rigid body modes discussion, Eqgs. (32) to (34). Creation of the transformation matrix, Egs. (35) to (40),
is also similar to when no rigid body modes are present. The one exception is that the rigid body modes must
be included in the transformation matrix. Therefore, Eq. (85) is replaced by

P
L} 8ee d ch o cr ¢
= %] (48)
i 8ic, Q &

T

Formation of the final transformation matrix, and subsequently the component mass and stiffness matrices,
is then performed as described in the previous section.

Discussion

As previously discussed, most component mode synthesis applications use the normal eigenvalues of the
substructure to form the component. It is accepted that if all the eigenvalues of a system are used to form the
component, an "exact” finite element solution may be obtained. The same fact holds true for components
based upon block-Krylov subspaces. Mathematically, this is proven in references {3] and [12]. If n orthogonal
block-Krylov Ritz vectors are used to form a component of a n-size system, the same ”exact” solution as from
normal eigenvectors is obtained.

Orthogonality

Upon completion of the block-Krylov vector calculations and Gram-Schmidt orthogonalizations, all vectors
are re-checked for orthogonality. Orthogonality checking is required because the normalized Gram-Schmidt



orthogonalization algorithm is not always successful at producing independent vectors [6]. The Gram-Schmidt
procedure will fail on occasions when vectors, although theoretically independent, are dependent within the
numerical constraints of current digital computers. These vectors cannot then be made orthogonal and
independent, using the normalized Gram-Schmidt procedure described in the previous sections.

The orthogonality of the block-Krylov vectors is re-checked using the following
L=Q" m;Q (49)

If all vectors are orthogonal and normalized with respect to the mass matrix, L will be a l-size identity matrix.
The mass matrix used in Eq. (49) is appropriate for fixed interface modes. For the free interface approach,
the full physical mass matrix is used.

Several solutions to the numerical dependence problem are being investigated. These potential solutions
include selective re-orthogonalization, the modified Gram-Schmidt procedure [6], and Kahan’s
orthogonalization procedure [13].

During examination of the boundary flexibility method, it was found that the Ritz vectors within the Krylov
blocks were dependent on each other. In fact, it was determined that there is no theoretical basis why the
vectors within the initial block should be independent. The boundary flexibility algorithm, as presented in
reference [2] and discussed in section two, makes no orthgonality check of the vectors within the Krylov block.
Furthermore, the subsequent Gram-Schmidt procedure is ineffective because the blocks are orthogonalized
with respect to a set of vectors that are not orthogonal.

The problem of dependent vectors within the block can be eliminated by modifying the boundary flexibility
algorithm. In order to make all the vectors in the solution orthogonal, each Krylov block was partitioned into
it’s individual vectors. The Gram-Schmidt orthonormalizing procedure, shown in Eqgs. (9) to (12), was then
applied vector by vector to each Krylov block. The constituent vectors are then reassembled and the analysis
proceeds as before. An alternate solution to the problem of dependent vectors w11;h11}t she blocks is shown in
reference [12]. In this solution a singular value decomposition is performed on the q Tm ; subspace The
resulting similarity transformation orthogonalizes the block.

Modal Selection

A subject which requires future investigation is the selection of block-Krylov component modes. The Krylov
vectors are modes, although they are static modes (as are constraint and attachment modes), in contrast to
the normal modes based upon the eigenvalues. The simplest approach to modal selection is modal truncation,
based upon the numerical value of the natural frequency. However, modal truncation cannot be used directly
with Krylov modes, because there are no eigenvalues associated with them. Modal selection techniques more
sophisticated than modal truncation will also be investigated. The algorithm currently implemented has no
modal selection capability. The Krylov modes produced are the Krylov modes used, in component formation,

Example
Programming
The previously described algorithms were implemented in MSC/NASTRAN [14]. The use of a standard,
commercially available computer program allows the results of this work to be easily used by other structural
dynamists. Adding these methodologies to MSC/NASTRAN is allowed through the use of the internal

programming language called DMAP (Direct Matrix Abstraction Programming). The standard solution
sequences of MSC/NASTRAN are written in DMAP, and the source code of MSC /NASTRAN is available
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at the DMAP level. For example, Egs. (3) to (5), and Eqgs. (16) to (23) are currently contained in the
standard MSC/NASTRAN normal modes solution. Equations (8) to (12} were coded using DMAP, and were
then incorporated into the MSC/NASTRAN solution sequence. A DMAP listing of the present methodology
is contained in the Appendix.

Definition

An example case of a cantilevered beam was derived from a finite element model of the Space Station
Freedom photovoltaic array central mast. The length of the beam was 1179.9 in. The modulus of elasticity,
E, was 10.1x10% lb/in.2 and the moment of inertia of the cross section was 108.9 in.* Its weight per unit
length was 0.2296 l1b/in. The cantilevered beam was modeled with eleven nodes and 10 beam finite elements.
A variety of boundary conditions, described in the next section, were imposed upon this beam.

Results

A component representation of the 10 element beam was created using the boundary flexibility method with
block-Krylov iteration. The fixed interface approach, with two Krylov blocks and constraint modes, was used
to form the component. The interface of the component consisted of one node and 6 degrees of freedom. The
number of constraint nodes is equal to the number of interface degrees of freedom, and the size of the Krylov
block is equal to the number of constraint modes. Therefore, each Krylov block contained six vectors. Since
the component was formed with two Krylov blocks, it contained a total of 12 generalized coordinates.

Plots of the lateral Krylov vectors, which represented the cantilevered beam, are shown in PFigs. 1 to 4. The
unorthogonalized vectors, as output by Eqs. (8) and (8) are shown in Figs. 1 to 2(a) and Figs. 3 to 4(a),
respectively. The first normalized vector, as output by Eq. (7), is given in Fig. 1(b). (The first vector does
not need to be orthogonalized.) The remaining orthogonalized and normalized vectors, as output by Eq. (12),
are given in Figs. 2 to 4(b). The first two unorthogonalized Ritz vectors (plotted in Figs. 1 to 2(a)), which
are in the first Krylov block, appear to be nearly identical. The first mode is similar to the classic first
bending normal mode shape of a beam and, after Gram-Schmidt orthogonalization, the second vector has
become the classic second bending normal mode shape (shown in Figs. 1 to 2(b)).

The eigenvalues of the reduced Krylov subspace were calculated next. The first five natural frequencies from
this reduced system are shown in Table 1. For comparison, Table 1 also includes the frequencies of a reduced
system where the component was formed using traditional normal modes. This component was also formed
with a fixed interface, but thirteen normal modes were used for numerical convenience. The full, or ”exact,”
finite element eigenvalue solution is also shown. In the case of the Krylov vectors, no modal selection of any
kind was used. For the case of the normal modal component, modal selection by truncation was used. The
superior accuracy of the normal modal component, in the fourth bending mode, does not necessarily represent
a limitation of the block-Krylov method, but instead demonstrates the need for a Krylov modal selection
criteria.

In addition to the fixed interface example, two free interface examples were created. Both were was based on
the same 10 element beam described above, but with different boundary conditions. The first model was free-
fixed, with the component interface being the free boundary condition, and hence it had no rigid-body modes.
Equations (24) to (40) define the formulation of this free interface component. Table 2 shows the first five
system natural frequencies of this model compared to the natural frequencies of the full finite element model.
The other model consisted of the 10 element beam with free-free boundary conditions and rigid body modes.
Equations (41) to (48) define the formulation of this component. Table 3 shows the first four elastic
frequencies of this model compared to the frequencies of the full finite element model. In the two free interface
cases, there is no comparison with the normal component mode synthesis. This is because standard free-
interface MSC/NASTRAN routine does not use the " Rubin-MacNeal” method, and so a direct comparison
was not performed.
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Conclusions

Using boundary flexibility matrices to initialize the block-Krylov recurrence algorithm provides an efficient
and simple method for generating static Ritz vectors. Static Ritz vectors so generated accurately represent
the dynamics of a substructure. Because this methodology does not require the solution of the component
eigenvalue problem, the component can be formed with a significant decrease in computational effort.
Although the issues of vector dependency and modal selection require further investigation, the block-Krylov
Component Mode Synthesis method is a promising alternative in dynamic substructuring.
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TABLE 1.—COMPARISON BETWEEN THE CANTILEVERED BEAM

FREQUENCIES USING FIXED INTERFACE COMPONENT

NORMAL MODES, KRYLOV MODES,

AND FINITE ELEMENTS

System frequencies From component From component
full finite element normal modes, Krylov modes,
A% A%
1st Bend 0.5464 Hz 0.5464 Hz 0. 0.5464 Hz 0.
2nd Bend 3.415 Heg 3.415 Hz 0. 3.415 Hy 0
3rd Bend 9.622 Hz 9.522 Hz 0. 9.610 Hz
4th Bend 18.57 Hz 18.57 Hz 0. 24.24 Hz 30.5
1st Tors 27.58 Hz 27.58 Hz 0. 27.58 Hz 0.

TABLE 2.—COMPARISON BETWEEN THE CANTI-
LEVERED BEAM FREQUENCIES USING FREE

INTERFACE COMPONENT NORMAL
MODES, KRYLOV MODES, AND

FINITE ELEMENTS

System frequencies
full finite element

From component
Krylov modes,

A%
1st Bend 0.5464 Hz 0.5464 Hz 0.
2nd Bend 3.415 Hz 3.415 Hz 0.
3rd Bend 9.5622 Hz 9.524 Hz .02
4th Bend 18.57 Hz 19.23 Hz 3.6
1st Tors 27.58 Hz 27.58 Hz 0.

TABLE 3.—COMPARISON BETWEEN THE FREE-

FREE BEAM FREQUENCIES USING FREE

INTERFACE COMPONENT KRYLOV

MODES, AND FINITE ELEMENTS

System frequencies
full finite element

From component
Krylov modes,

A%
Rigid Body (6) 0. Hz 0.000 Hz | 0.
1st Bend 3.474 Hz 3.474 He 0.
2nd Bend 9.549 Hz 9.549 Hz 0.
3rd Bend 18.65 Hz 18.69 Hz 21
4th Bend 30.70 Hz 33.15 Hz 8.0
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(a) Initial calculation.

\

(b) After normalization.

Figure 1.—Fixed interface Krylov mode, block one, vector
one.

\

(a) Initial calculation.

e T~
\

(b) After Gram-Schmidt orthogonalization.

Figure 2.—Fixed interface Krylov mode, block one, vector
two.

\

(a) Initial calculation.

~~—_-" X

(b) After Gram-Schmidt orthogonalization.

Figure 3.—Fixed interface Krylov mode, block two, vector
one.

(b) After Gram-Schmidt orthogonalization.

Figure 4.—Fixed interface Krylov mode, block one, vector
two.
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Appendix - MSC/NASTRAN DMAP Listing of the Boundary

Flexibility Method of Block-Krylov Component Synthesis

BOUNDARY FLEXIBILITY METHOD DMAP IMPLEMENTATION

VERSION 1.0 - KELLY CARNEY .
IMPLEMENTED ABDALLAH’S WORK AS PUBLISHED

NOTES ON USAGE

-~ A DUMMY METHOD AND EIGR CARD MUST BE USED TO INITIATE RITZ
VECTOR CALCULATION.

- MODAL DEGREES OF FREEDOM MUST BE PROVIDED AND SPECIFIED
ON SEQSET CARDS, AS WITH STANDARD NASTRAN SOLUTION

- MIXED BOUNDARY CONDITIONS (B AND C SET POINTS) ARE NOT YET
IMPLEMENTED. USE B OR C, NOT BOTH.

- NOT COMPATIBLE WITH DYNAMIC REDUCTION, IF REQUESTED IT WILL
NOT BE PERFORMED

- AUTO-OMIT FEATURE HAS BEEN DISABLED. IF AUTOSPC IS ON,
AUTO-OMIT IS NOT REQUIRED

PARAMETERS

PARAM,BFLEX,-1- A NEGATIVE VALUE ON THIS PARAMETER TURNS ON THE
BOUNDARY FLEXIBILITY METHOD,
IF MULTIPLE SUPERELEMENTS ARE BEING PROCESSED,
PLACE IN SUBCASE SECTION OF CASE CONTROL

PARAM,L,I - L IS THE NUMBER OF RITZ VECTOR. DESIRED, IT I8
SET BY THE NUMERICAL VALUE OF I

PARAM,DIAG,1- A POSITIVE VALUE CAUSES A LARGE AMOUNT OF MOSTLY
INDESCIPHERABLE DATA TO BE PRINTED

MATRICES
INPUT - CMKXX, CMMXX, GOAT, USET

OUTPUT,FIXED INTERFACE - GOQ,
OUTPUT,FREE INTERFACE - GOQ, REVISED MAA AND GOAT

$
$
$
8
$
$
$
$
$
$
$
$
$
$
§
8
8
$
$
$
$
]
3
$
$
$
$
$
[]
$
$
$
8
3
8
$
$
8
$
]
$
$
$
$
$§ SETUP BOUNDARY FLEXIBILITY PARAMETER AND DISABLE DYNAMIC

$ REDUCTION

$

ALTER 7268

TYPE PARM,,1Y,(BFLEX=1) §

IF( BFLEX < 0) NODYNRED = -1 §

$

$§ DISABLE AUTO-OMIT REDUCTION

$

ALTER 757§

IF( BFLEX < 0) NOARED = -1 §

$

$ MOVE TO BOUNDARY FLEXIBILITY SECTION IF REQUESTED

$

ALTER 7758

COND BOUNFLX,BFLEX § JUMP TO BOUNDRY FLEXIBILITY DMAP SECTION
$

ALTER 7838

JUMP ENDBF §

$

$ BEGIN BOUNDARY FLEXIBILITY METHOD SECTION

$

LABEL BOUNFLX $

$

$ CREATE AND SET INITAL PARAMETERS
$

TYPE PARM,,N,(I=2) $ INCREMENT OF RITZ VECTORS
TYPE PARM,,LN,(I1=32) § INC OF RITZ VEC IN FIRST SET
TYPE PARM,,LN,(1=2) $ INC OF RITZ VEC IN ITH SET
TYPE PARM,N,(IR=2) § INC OF R-SET

TYPE PARM,]N,(JSET) § SIZE OF RITZ VEC SET

15



“w &

R ® « ©® & P PP ®» »

oo

@ P&

TYPE PARM,,RS,N,(MAXRAT) $ MAXRAT FROM DECOMP OF CMKXX

TYPE PARM,,LY,(L=1)$ TOTAL NUMBER OF RITZ VEC

TYPE PARM,,LY,(DIAG=-1) § DIAGONOSTIC PRINTOUTS

FILE QP=APPEND,OVRWRT § ALLOW QP TO APPEND,OVERWRITE
FILE QL=APPEND § ALLOW QL TO BE APPENDED TO

FILE QNEW=APPEND § ALLOW QNEW TO BE APPENDED TO
FILE PHIVZ=OVEWRT § ALLOW PHIVZ TO BE OVERWRITTN
FILE NPHIVR=APPEND § ALLOW NPHIVR TO APPEND

FILE MAA=OVRWRT § ALLOW MAA TO BE OVERWRITTEN

FILE KAA=OVRWRT$§ ALLOW KAA TO BE OVERWRITTEN

CHECK TO SEE IF BOTH B AND RC HAVE BEEN DEFINED

IF(NORC>0 AND NOBSET>0) MESSAGE /

/'FATAL BRROR. - BOTH BSET AND CSET OR RSET DEGREES OF FREEDOM’/
'HAVE BEEN DEFINED, ONLY ONE TYPE IS CURRENTLY ALLOWED’/ §
IF(NORC>0 AND NOBSET>0) JUMP RFERR $

PARTITION OUT SUPORT DEGREES OF FREEDOM, IF REQUESTED
VEC USET/VVRO/'V'/'R’/'COMP’/$ CREATE PARTN VECTOR R-SET

IF(NORSET >0) THEN $ EXECUTE ONLY IF R-SET
PARTN CMKXX,VVRO,/,,KZZ/-1/////6 $ PARTION STIFFNESS MATRIX

ELSE § IF NO R-SET
EQUIV CMKXX,KZZ/ALWAYS $ RENAME CMKXX TO KZ7Z
ENDIF §

CALCULATE INITIAL RITZ VECTORS MATRIX

DECOMP KZZ/LZZ,/1/////S,N,SING/S,N,NBRCHG/
S,N,MAXRAT/ $ DECOMP STIFFNESS MAT

IF (SING=-1 OR NBRCHG>0 OR MAXRAT>1.E5) MESSAGE /

/’FATAL ERROR-STIFFNESS SINGULAR-SUPPORT DOFS MAY BE REQUIRED'/$
IF (SING=-1 OR NBRCHG>0 OR MAXRAT>1.E§) JUMP RFERR $ SINGULAR MAT
DIAGONAL KZZ/1ZZ/'SQUARE’/0. § Z-SIZE IDENTITY MAT
FBS LZZ,12Z/KINV/ $ CALCULATE K**-1

FOR FIXED BC METHOD

IF(NOBSET>0) THEN §

MPYAD KINV,CMMXX,/KINVM/ § CALCULATE K**.1*M

MPYAD KINV,MOA,/KINVMOA/ 8§ CALCULATE K**-1*MOA
MPYAD KINVM,GOAT,KINVMOA/Q1S8/$ CALCULATE INITIAL VEC
UPARTN USET,Q18/Q1SA,,,/'A'/’B’/'Q’/2 8 PARTN DOWN TO B-SIZE
ENDIF $

THIS SECTION IS EXECUTED FOR FREE INTERFACE METHOD
IF(NORC>0) THEN § IF EITHER R OR C SET

THIS SECTION IS EXECUTED FOR FREE INTERFACE METHOD,
WITH RIGID BODY MODES

IF(NORSET>0) THEN § ONLY IF R SET
CREATE AND ORTHO-NORMALIZE RIGID BODY TRANSFORMATION MATRIX

VECPLOT, ,BGPDTS,EQEXINS,CSTMS,USET/PHIGR/GRDPNT//6 §
UPARTN USET,PHIGR/PHIVR,,,/'G'/’V'/!3’/1 § RIGID BODY MAT

EXTRACT FIRST VECTOR FROM MATRIX AND NORMALIZE
MATMOD PHIVR,,,,/PHIVR1,/1/1$ EXTRACT ILST COLUMN
SMPYAD PHIVR1,CMMXX,PHIVRL,,,/NPH1/3////1////18
DIAGONAL NPH1/NPH1S/'SQUARE’'/-.5 8 SCALE FACTOR
MPYAD PHIVRL,NPH1S,/NPHIVRS NORMALIZE VECTOR

ORTHOGONALIZE REMAINING RIGID BODY VECTORS

DO WHILE (IR <= NORSET) $

MATMOD PHIVR,,,,/PHHR,/1/IR§ EXTRACT IRTH COLUMN

ORTHOGONALIZE IR VECTOR WITH PREVIOUS VECTORS

SMPYAD NPHIVR,CMMXX,PHIIR,,,/CIR/3////1 $ SCALE FACTOR
MPYAD NPHIVR,CIR,PHIIR/PHIIRS//-1 $ ORTHOGONALIZE

NORMALIZE ORTHOGONAL IR VECTOR
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SMPYAD PHIRS,CMMXX,PHIIRS,,,/NPHIIR/3////1/]//18
DIAGONAL NPHIIR/NPHIIRS/’SQUARE'/-.5 § SCALE FACTOR
MPYAD PHIIRS,NPHIIRS,/PHIIRSS § NORMALIZE VECTOR

APPEND PHIIRSS,/NPHIVR/2 § ADD NEW VECTOR

IR=IR~+1§ INCREMENT
ENDDO § END DO LOOP

$ FORM INERTIA RELIEF MATRIX, GE (EQNS 21,22,23 - ABDALLAH)

MERGE, ,,KINV,VVRO,/GC/-1//6$% EXPAND KINV TO X-SIZE
DIAGONAL GC/IXX/'SQUARE’/0.$ CREATE IDENTITY MAT
SMPYAD CMMXX,NPHIVR,NPHIVR,IXX, IXX/AXX/4/-1/1////1/ §
SMPYAD AXX,GC,AXX,,,/GE/8////1////6 3 CALCULATE GE

$
$ THIS SECTION IS EXECUTED IF FREE INTERFACE WITHOUT RIGID-BODY
$
ELSE §
EQUIV KINV,GE/ALWAYS $ IF NO R-SET
ENDIF §
$
$ FOR FREE INTERFACE, RIGID BODY OR NOT
3

VEC  USET/VVCO/'V'/'C’/’COMP’/§ C-SET PARTN MATRIX
ADD VVRO,VVCO/VVRCO///1§ R AND C-SET PARTN MAT
PARTN GE,VVRCO,/GVRC,,,/1/8  PARTITION OUT O COLS

MPYAD GE,CMMXX,/KINVM/ $ CALCULATE K**-1*M
MPYAD KINVM,GVRC,/Q18A/$ CALCULATE INITIAL VEC
ENDIF $

@

$ EXTRACT FIRST VECTOR FROM MATRIX AND NORMALIZE FOR FIXED OR FREE

MATMOD Q1SA,,,,/QLPS,/1/1$ EXTRACT 1ST COLUMN
SMPYAD Q1PS,CMMXX,Q1PS,,,/NQ1/3////1////1%
DIAGONAL NQ1/NQ1S/°SQUARE’/-.58 SCALE FACTOR
MPYAD Q1PS,NQ1S,/QP § NORMALIZE VECTOR
$
$
COND PRINT1,DIAG §
MATPRN KZZ,CMMXX,GOAT,PHIGR,PHIVR/ $
MATPRN NPHIVR,GC,AXX,GE,KINVM/ §
MATPRN GVRC,Q18A,Q1P8,,/ §
PRTPARM ///'NOBSET’/1$
PRTPARM ///'NOTSET’/1$
PRTPARM ///'NORC’/18
PRTPARM ///°L’/1$
LABEL PRINT1 $
$
$ ORTHOGONALIZE FIRST SET OF VECTORS
8
DO WHILE (I1 <= NOTSET) §
$
MATMOD Q18A,,,,/Q111,/1/I1 8 EXTRACT I1TH COLUMN

@

8 ORTHOGONALIZE 11 VECTOR WITH PREVIOUS VECTORS

SMPYAD QP,CMMXX,Q1I1,,,/CI1/3////1 % ORTHO SCALE FACTOR
MPYAD QP,CI1,Q1I1/Q1118//-18 ORTHOGONALIZE

NORMALIZE ORTHOGONAL I1 VECTOR

w0 B PR

SMPYAD Q1I18,CMMXX,Q1118,,,/NQ1I /3////1////1$
DIAGONAL NQILI1/NQ1I18/’SQUARE’/-.5 8 SCALE FACTOR
MPYAD QII18,NQ1I1S,/QLI18S §  NORMALIZE VECTOR
$
COND PRINTZ2,DIAC $
PRTPARM ///'11'/1$
MATPRN QP,QiI1,C11,Q1118,Q1118S/
LABEL PRINTZ §
$
APPEND QII188,/QP/2 $ ADD NEW VECTOR
$ NOTE: IF NEW VECTOR IS NULL IT IS NOT APPENDED
$
nm=I1+18 INCREMENT
ENDDO § END DO LOOP
$
$ INITIALIZE QL MATRIX
$
COPY QP/QL/ALWAYS/1§ QL - SUM OF VECTORS
8
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COND PRINTS,DIAG $
SMPYAD QL,CMMXX,QL,,,/OCHK11/3////18%
MATPRN QL,0OCHK1l,,,/$
LABEL PRINT3 §
8
$ BEGIN DO LOOP OF SOLVING FOR SUBSEQUENT VECTORS
$
DO WHILE (I <=L) §

$ CALCULATION OF NEW SET OF VECTORS

MPYAD KINVM,QP,/QIS/ § (K**-1)*RITZ PREVIOUS
PARAML QIS//'TRAILER’/1/S,N,NOJSET $ NO. COLUMS IN QIS
$
$ MAKE NEW SET OF VECTOR ORTHOGONAL TO PREVIOUS SETS
$
SMPYAD QL,CMMXX,QIS8,,,/C1/3////1$ CALCULATE SCALE
MPYAD QL,CLQIS/QISS//-18 ORTHOGONALIZE
$

$ EXTRACT FIRST VECTOR FROM NEW SET AND NORMALIZE

MATMOD QISS,,,,,/QUJL,/1/1§ EXTRACT 18T COLUMN
SMPYAD QIJ1,CMMXX,QIJ1,,/NQI11/3////1////18
DIAGONAL NQI1/NQI1S/'SQUARE’/-.58 SCALE FACTOR

MPYAD QIJ1,NQI1S,/QNEW § NORMALIZE VECTOR
$

COND PRINT4,DIAG §

PRTPARM ///'1’/1/ §

MATPRN QIS,CI,QISS,QIJ1,QNEW/ §
LABEL PRINT4 §

$

J=28$ RESET LOOP COUNTER
$
$ ORTHOGONALIZE NEW SET OF VECTORS WITH EACH OTHER
$

DO WHILE (J <= NOJSET) §

MATMOD QIS8,,,,,/Q1J,/1/38 EXTRACT JTH COLUMN

@

$ ORTHOGONALIZE JTH VECTOR WITH PREVIOUS VECTORS

SMPYAD QNEW,CMMXZX,QLJ,,,/C3/3////1$ ORTHO SCALING
MPYAD QNEW,CJ,QII/QIIS//-1$ ORTHOGONALIZE

NORMALIZE ORTHOGONAL JTH VECTOR

L

SMPYAD QIIS,CMMXX,QLJS,,,/NQ13/3////1////18
DIAGONAL NQII/NQIJS/'SQUARE’/-.5 $§ SCALE FACTOR
MPYAD QIIS,NQIJS,/QIISS 8 NORMALIZE VECTOR

$
APPEND QIISS,/QNEW/2$ ADD NEW VECTOR
8
COND PRINTS,DIAG §
PRTPARM ///3'/1%
MATPRN QIJ,CJ,QIIS,QIJSS,QNEW/ $§
LABEL PRINTS5 §
8
J=J+18 INCREMENT
ENDDO $ END DO LOOP

®

$ APPEND NEW VECTOR TO VECTOR MATRIX AND COMPLETE LOOP

APPEND QNEW,/QL/28 APPEND NEW YECTOR TO PREVIOUS
COPY QNEW/QP/ALWAYS/1$ RESET PREVIOUS VECTOR TO NEW

I=XI+18% INCREMENT
ENDDO $ END DO LOQOP

FINISH PROCESSING MODE SHAPE MATRIX

® @

IF (NORSET>0) THEN $ IF R-SET, APPEND

APPEND NPHIVR,QL/CMPHIXZ/1 $ RIGID BODY MODES

ELSE § IN NO R-SET, JUST

EQUIV QL,CMPHIXZ/ALWAYS $ CONVERT TO NASTRAN NAME
ENDIF $

PERFORM MODE ORTHOGONALITY CHECK

@ BB

SMPYAD CMPHIXZ,CMMXX,CMPHIXZ,,,/OCHKLL/3////1$ PHI-T * M * PHI
SMPYAD CMPHIXZ,CMKXX,CMPHIXZ,,,/KBAR/3////1$ PHIL.T * K * PHI

18



DIAGONAL OCHKLL/MI//-.5 § DIAGONAL TERM AND ROOT

DIAGONAL KBAR/KI/ /.5 § DIAGONAL TERM AND ROOT

ADD  MILKI/Q/.159155//1$ CALCULATE FREQUENCIES

MATPRN OCHKLL,KBAR,QL,Q,// $
$
PARAML CMPHIXZ//'TRAILER’/1/8,N,NOZSET $§ NUM RITZ = NUM EIGENVECTORS
$

LABEL ENDBF §
$
$ TRANSFORMATION MATRIX CREATION
$ -BASED ON RUBIN-MACNEAL FOR FREE MODES (DOESN’T USE INREL)
$
ALTER 807 §
COND TRANSF,BFLEX § GO TO TRANSFORMATION DMAP
JUMP ETRANSF $§ JUMP AROUND IF NOT REQ.
$
ALTER 808 $
LABEL TRANSF $ AVOID INREL MODULE
$
$ FREE BOUNDARY TRANSFORMATION
$
IF(NORC>0) THEN $ EXECUTE ONLY IF RC SET

CALCULATE SYSTEM FLEXIBILITY WHEN RITZ VECTOR HAVE BEEN
ORTHOGONALIZED WRT THE MASS MATRIX (EQN. (16) ABDALLAH)

LI

SMPYAD QL,CMKXX,QL,,,/GK1/3////1////6$% INTER CALC
SOLVE GK1,/GK1INV/3 $ INVERT INTER CALC

TRNSP QL/QLT $ TRANSPOSE QL

SMPYAD QL,GK1INV,QLT,,,/GK/3////////6% CALC MODAL FLEX

CALCULATE RESIDUAL FLEXIBILITY MATRIX
NOTE: IF NO R-SET IS PRESENT THEN GE IS KINV

OB B

ADD GE,GK/GD//-1.0/0/$ GD = GE - GK

PARTITION DOWN SQUARE FLEXIBILITY MATRIX TO C OR BOUNDARY DOFS

@ W

PARTN GD,VVRCO,/GCRCD,GORCD,,/-1//6/$ GD = (GCRCD/GORCD)

FORM FREE "CONSTRAINT” MODE MATRIX, WHICH I8
THE LOWER LEFT PARTITION OF THE TRANSFORMATION MATRIX

@ B DD

SOLVE GCRCD,/GCCDINV/3§ INVERT GCRCD
MPYAD GORCD,GCCDINV,/GOATFRS/ $ GOAT = GOCD*GCCD**-1

FORM FREE "MODAL” MATRIX, WHICH I8
THE LOWER RIGHT PARTITION OF THE TRANSFORMATION MATRIX

@ hPD

PARTN CMPHIXZ, VVRCO/QRCL,QOL,,/1/$ CMPHIXZ = (QRCL/QOL)
MPYAD GOATFRS,QRCL,QOL/PHIVZ//-1/$ PHIVZ=QOL-GOAT*QROCL

PACK GOATFRS WITH ZEROS TO MAKE IT A-SIZE
THE LOWER LEFT PARTITION OF THE TRANSFORMATION MATRIX

"B W

VEC USET/VAQRC/'A’/'Q’/’COMP'/$§ FORM PART VECTOR
MERGE, ,,GOATFRS,,VAQRC,/GOATFREE/1/§ MAKE A-S1ZE

FORM REPLACEMENT BOUNDARY MASS AND STIFFNESS MATRIX, THIS
TRANSFORMATION IS THE SIMILAR TO STANDARD CMS AND SOL 63,
EXCEPT FOR FREE, REVISED 'GOAT’ MATRIXIS NOT EQUAL TO
CONSTRAINT MODES, SO STIFFNESS TRNASFORMATION I8 SAME A8 MASS

LA

MPYAD MOO,GOATFREE,MOA/MOALFR $ IDENTICAL TO 820
MPYAD MOA,GOATFREE,MAA1/MAA2FR/1§ INTERMEDIATE
MPYAD GOATFREEMOA1FR,MAA2FR/MAA/1////6$ NEW MASS MATRIX

MPYAD KOO,GOATFREE,KOA/KOA1FR § STIFFNESS SECTION
MPYAD KOA,GOATFREE,KAA1/KAA2FR/1§ INTERMEDIATE
MPYAD GOATFREE,KOALFR,KAA2FR/KAA/1////68 NEW KAA MATRIX

REPLACE PREVIOUS GOAT WITH FREE ONE CALCULATED HERE

@h e e

EQUIV GOATFREE,GOAT/ALWAYS §

@

ENDIF §

$
$ MAKE PHIVZ Q-SIZE, THIS REPLACES INREL FOR FREE AND FIXED
$ BOUNDARY FLEXIBILITY METHODS

$

IF (NOZSET > NOQSET) MESSAGE /
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/'FATAL ERROR-NUMBER OF MODES EXCEEDS Q-SET DOF’/$
IF (NOZSET > NOQSET) JUMP RFERR §
$
MATGEN ,/%Q/6/NOQSET/NOZSET/NOQSET $ CREATE PARTITIONING MATRIX
MERGE PHIVZ,,,2Q,/GOQ/1$ TO MAKE PHIVZ Q-SIZE (GOQ)
$
COND PRINT6,DIAG S
MATPRN CMPHIXZ,GK1,GKI1INV,GK,GD//$
MATPRN GCRCD,GORCD,GCCDINV,GOATFRS,QRCL//$
MATPRN QOL,PHIVZ,GOATFREEMAA,KAA// S
LABEL PRINTS §
$
LABEL ETRANSF $
$
$ SETUP INTERMEDIATE MODAL STIFFNESS MATRIX
$
ALTER 816,816 $
UMERGEl USET,KQQ,,,/KLAAL/'A’/’Q'/’T’ /0 §
8 .
$ CREATE OFF-DIAGONAL MODAL STIFFNESS TERMS
$
ALTER 818 §
IF(NORC>0 AND BFLEX<0) THEN $
MPYAD KOO,GOAT,KOA/KOALS$
MPYAD GOAQ,KOAL,/KQT/1$
TRNSP KQT/KTQS$
ADD KQT,KTQ/KAAQTS$
ADD KLAALKAAQT/KLAAS
ELSE §
EQUIV KLAA1,LKLAA/ALWAYSS$
ENDIF $
$
ALTER 859§
COND PRINT7,DIAG $
MATPRN GOQ,KLAA MLAA,,//$
LABEL PRINT7$
$
ENDALTER $
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