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ABSTRACT

This paper presents a way to efficiently compute the sensitivities of steady state
resonant response and discusses the utility of these sensitivities in redesign and
optimization. The resonant response sensitivities are calculated by combining the new
capabilities of MSC/NASTRAN v67 in SOL 108, 111 and DMAP soiution sequences. Two
examples illustrate the approach.



Introduction

A large class of structures can be modelled as damped linear vibrational systems with har-
monic excitation. It is often desirable to minimize the amplitudes of the response by modifying
the design. Moore and Nagendra [1] introduced a general scheme to compute dynamic response
sensitivities via a semi-analytical approach in both direct and modal formulations for frequency
response. In the modal formulation, a technique was implemented which computed the response
sensitivities without using the derivatives of eigenvectors. Watt and Starkey [2] presented a tech-
nique to modify the response amplitudes through changes in the mode shapes and damping, and
explored the trade-offs between the cost of the design change and the size of improvement in the
response. The methods of sensitivity analysis and optimization used in [1] and [2] are based on a
fixed or constant driving frequency. Thomson and Bernard [3] computed derivatives of resonant
response in the frequency domain. For derivatives of resonant response, the driving frequency
will change as the design changes.

This paper presents a way to efficiently compute the derivatives of the amplitudes of the
steady state resonant response of damped structures with respect to possible design changes.
These sensitivities can be used to approximate resonant amplitudes to support the redesign pro-
cess or to compute objective functions which depend on a resonant response. Two examples dem-

onstrate the approach.

Sensitivity Derivatives of Resonant Response

Equations of Motion

The governing equations for frequency response of an N degrees of freedom linear vibra-

tory system can be written:

(-’ [M] +jo[B] + [K]) {U} = {P} M

where [M] |B] R and [K] are the mass, damping, and stiffness matrices, {U} nx1

nxn’ nxn

and {P} _, are the vectors of response amplitudes and force magnitudes, and where ® is the

driving frequency and j = J-1.



In MSC/NASTRAN, structural mass matrix [M] is a sum of the contribution from ele-
ment [M,] and the direct matrix input at grids [M,]. The total damping force matrix [B] is the
sum of the contribution of viscous elements [B,] and the direct matrix input at grids [B,]. The
complete stiffness matrix [K] for frequency response analysis consists of a superposition from
the following sources:

[K1 = [K{] +jg (K] +Zgk, + [K,] @)

where
[K] is the structural stiffness matrix
g  is the uniform structural damping coefficient, PARAM, G
g, 1is the structural damping coefficient, MAT card.
[K,] is the direct matrix input at grids

The remainder of this section will discuss the sensitivity calculation of the steady state res-
onant response in both direct and modal formulations. The method employed here to calculate
sensitivity derivatives is a semi-analytical approach including direct differentiation of the govern-
ing equations combined with difference approximations for first derivatives of the structural

model.

Direct formulation
Let {e} denote a vector of design parameters, {¢”} be the initial design, and @’ be a
natural frequency of the initial design. For resonance, the mass, damping, stiffness matrices and
the driving frequency o, are functions of design variables e. Equation (1) can be written as:
[Z(w;(e),e)]{U(e)} = {P(e)} 3)

where

[Z(0;(e), )] = —0?;(e) [M(e)] +jw;(e) [B(e)] + [K () ] )
Taking partial derivatives of Equation (3) with respect to design variables e,, where k=1,2...s, we

get
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where aie{U}C is the sensitivity of resonant response with a constant driving frequency and
k

a%{U}V represents the sensitivity of resonant response due to the change in resonant frequency,
k
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For small damping, we do not expect the resonant frequency to be damping dependent. For an

undamped vibratory system, it is well known [4] that

1O KT — @20
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where @, are the eigenvectors of the system. Thus,
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Note that right hand side of the calculation called for by Equation (5) includes only prod-
ucts of vectors and matrices, i.c., they take on the order of N? calculations. The solution for
%{ U} can then also be done in O(NZ) calculations because the decomposition of [Z] is known

k

from the solution of Equation (3).

Modal Formulation

For large-scale dynamic systems, modal reduction is a commonly used technique to
reduce computational effort. Assume that
{UY 1 = [®] 0 18,01 (12)

and

a _ .
o U = (01,0 (a4, 13

where @ is the reduced modal matrix from real eigenvalue analysis ( [K] — 0)? [M]) D =0
i=1,...,m, and {E} represents the reduced response vector from modal frequency response anal-
ysis. By substituting Equations (12) and (13) into Equation (5) and pre-multiplying both sides by
@', we have
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Equations (17) and (18) can be rewritten as

(2] {gq,}" = - (( —20,(®' [M] @) +(P'[B] D) )—— J{&} 20)
Therefore, the sensitivities of resonant response can be obtained from the following rela-
tionship.
Dt = nCid Y = o c v
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Optimization in the Frequency Domain

Finite-element based optimization usually entails several challenges including formulation
of the objective function, design sensitivity calculations, effectively using these sensitivities to
approximate finite element results called for by the objective function, minimization of the objec-
tive function to determine the optimal design, and checking the optimal design to see if the sensi-
tivities led to an accurate solution. This paper will demonstrate the utility of resonant response
sensitivities to replace recalculating resonant response for each new design.

Typically, Equation (1) yields complex amplitudes. Assume that u; is the i th entry of the
vector of response amplitudes {U} and y; is the magnitude of u;, then a simple relationship

dy; du;
between —— and — can be derived:

dek dek
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Now the ith amplitude of resonant response can be approximated by

0 Sayi 0
}’,=)’i+za-e';'(ek—ek) 24
1



Numerical Examples

Two examples will illustrate the meaning of the resonant response sensitivities and the
application of these sensitivities in redesign process and optimization procedure. Example 1 is a
simple two degree-of-freedom spring-mass vibratory system. This simple example has a closed-
form solution which allows analytical verification of the finite-element-based sensitivity calcula-
tions of resonant response. The second is a clamped plate. This example will show that the

method developed here can be applied to a damped large degree-of -freedom system.

Example 1: A Two Degree-of-Freedom Spring-Mass System

Figure 1 presents the configuration of a simple two degrees of freedom system which has a
harmonic loading F; on mass 1, where F| = f, - ™. The governing equations for the steady

state frequency response of this system are

1 JO _
0 m, Cy Coteg ky ky+ks|) |X, 0

where {X} represents the response amplitudes of the displacement vector {x} , and where the
driving frequency is at the first natural frequency ®; and j = J—1. With the given values, this

yields for excitation at first mode resonance

(_ o, [3.0 0} +J.w{ms —0.05} N {3.0 —1.0D , N _ [1‘0} 6
0 2.0 -0.05 0.15 -1.0 3.0 X, 0
where @, = 2nf; and f; = f{ =0.14 (hz).
First, assume that =, is the only design variable. Figure 2 presents the topology of reso-
nant response amplitude |X,| across a design range of m; from 2.0 to 4.0 and a dfiving frequency
range of f, from 0.0 to 0.4 (hz). This figure clearly shows the relationship between m; and the

two resonant frequencies. The original resonant amplitude X, = 8.27E-02 - 7.50E+00 j with |X ‘1’]

=7.50. Using Equation (6) to compute the sensitivity of resonant response amplitude |X4| yields



dx, dx§ ax¥
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Equation(23) yields the sensitivity of the magnitude of the resonant response.

dx dx
d _ 1 L. -
a‘éjxﬂ = [Re (X)) Re ( dmljum X)) Im ( dmlﬂ (1/]X4]) =190 28)

Two observations follow from these numerical results. First note that both X, and its
derivative are dominated by the imaginary part. This is to be expected for resonant response. Sec-
ondly note that Edi—(lj, the sensitivity at constant driving frequency, is not useful by itself - the vary-
ing frequency term is an important part of the amplitude sensitivity. Figure 3 presents resonant
values of |X| at various values of m,. The dashed line indicates that the resonant amplitude X1
calculated using the resonant response sensitivity gives a very good prediction for a design
change within ten percent of the original m,. Figure 4 compares a prediction of resonant response
amplitude |X,| with exact results across a wider range of m;. The figure indicates that resonant
response sensitivity gives a reasonable approximation even across this large range.

Now consider a more complicated example in which all masses and springs are potential
design changes. Table 1 compares the sensitivities of resonant response amplitude |X;| calculated
from closed-form solution to the MSC/NASTR AN-based results. By a procedure related to steep-

est decent, we select the step size of design change based on resonant response sensitivities nor-

malized to the largest sensitivity, .91x,|. Table 2 presents the computed step size for each design
9 kl 1 p p g

variable and the predicted resonant response amplitude |X4| based on 10% and 50% perturbed
step sizes of k; and Figure 5 compares exact and predicted amplitudes of resonant response. The
table and figure indicate that the sensitivity was a good approximation for 10% change. Further-
more, although the approximation seems to have broken down for the 50% change, the resonant
response amplitude based on the overall steepest decent direction was driven down by a factor
about 3.

Consider optimization with the goal of minimizing the first mode resonant response of

both X, and X,. Following reference [5], we choose the simple objective function
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Table 3 presents the improved design and Figures 6 and 7 present the improved frequency
response. The changes are large, thus it is not surprising that the approximation, as indicated by
the box in Figure 6, is not directly an target. Nevertheless, the overall results, as indicated by the

exact response of both amplitudes are clearly a step in the right direction.

Example 2: A Clamped Plate Subject To A Harmonic Loading
A steel plate of thickness 0.25 in., width 20 in, and length 90 in., clamped along two edges

is used to support a 60 Ibs machine which is mounted in the middle of the plate. See Figure 8.
During the operation of this machine, the plate is subjected to a harmonic load, P (¢) = 20.0¢™
lbs, with driving frequency ® at the first natural frequency o, of the initial system. This plate is
divided into nine sections and the thickness of each section is selected a design variable. The plate
is modelled as a finite element mesh with 288 CQUAD4 elements with 1575 degrees of freedom.
This model also includes a single scalar mass element at the center with a weight 60 lbs. We
assume the uniform structural damping equivalent to damping ratio 0.025 (PARAM,G 0.05). Fig-
ure 9 shows the finite element mesh of the plate and its first mode shape. This example illustrates
the application of a modal reduction scheme in computing the resonant response sensitivities with
driving frequency tracking. The reduced modal matrix @ of this system was formed by the first
20 eigenvectors.

Table 4 presents the sensitivities of the amplitude of resonant response at the center of the

plate,

U,167|. In the redesign procedure, we use these sensitivities to scale the design change
based on ts. Figure 10 and Table 5 present predicted and exact response amplitudes |U,167| with
10% and 50% changes of t5. The inaccuracy of the linear result for the 50% design change indi-
cated that, as we nﬁght expect, the amplitude of resonant response is a nonlinear function of the

thicknesses.



Conclusion and Ongoing Research

This paper presented qMSC/NASTRAN-based technique to compute the first order sensi-
tivity of the steady state resonant response with respect to design variables. Two examples illus-
trate that such sensitivities may be useful across fairly large design changes.

Our ongoing work is concerned with large changes: To get improved accuracy, there is a
choice between using higher order terms and intermittent recalculation of the frequency response
and linear sensitivities. The ultimate objective is to blend these sensitivities into a graphics-based

interface which will facilitate better participation of the designer in the optimization process.
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Figure-1. A two degree-of-freedom spring-mass system.
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Assume {x} = {X} -ejw’t
Design Vector {e} =[my, my, ky, ky, ks]
Initial Design {e°} =[3.0, 2.0, 2.0, 1.0, 2.0]

and [c;,¢0,¢4] = [0.1, 0.05, 0.1]
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Amplitude of resonant response: |X1|

Figure-2. The Topology of amplitude of resonant response X4
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Figure-3. Amplitude of resonant response |X 1| with various values of
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Figure-4. A comparison of predicted and exact amplitudes of resonant response |X,| across
a range of m;
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Figure-5. Predicted and exact amplitudes of resonant response |X,| with various step sizes of
design changes
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Table-1 Sensitivities of the amplitude of resonant response X4

o 2l ol 22l

® | EXACT MSC/ EXACT MSC/
SOLUTION | NASTRAN | SOLUTION | NASTRAN

m; | 04782 0.4780 1.9016 1.9014
m, | -1.6514 -1.6515 -0.9813 -0.9814
k, | -0.6199 -0.6197 -2.4654 -2.4653
ky, | -1.1882 -1.1879 -1.3700 -1.3697
ks | 21411 2.1413 1.2723 1.2725

Table-2 Using scaled step sizes of design change to compare the predicted and exact ampli-

tudes of resonant response |X 1l

Change Change
Initial normalized | normalized
Items values toa 10% to a 50%
change of change of
ky ky
my 3.0000 2.8457 2.2287
m, 2.0000 2.0796 2.3981
k, 2.0000 2.2000 3.0000
k, 1.0000 1.1111 1.5556
ky 2.0000 1.8968 1.4838
f1 (hz) 0.139775 0.144720 0.149203
|X 1|pre dicted | T 6.349884 1.757530
|X 1‘ oxact 7.497949 6.287626 | 2.686227
A|X | B 0.0623 -0.9287
Error% | - 0.9902 -34.5725
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Figure-6

. Optimization result of the two degree-of-freedom spring-mass System
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Figure-7. Optimization result of the two degree-of-freedom spring-mass System
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Table-3. Optimization result of the two degree-of-freedom spring-mass System

Weighting Initial Improved

parameters . .

design design
a;,b;

my 0.7500 3.00000 1.78355
my 0.7500 2.00000 1.50454
ky 0.7500 2.00000 3.57716
k, 0.7500 1.00000 1.19194
kq 0.7500 2.00000 2.64234
|X 1|pre dicted 1.0000 | - 2.33746
| 1|emct ---------- 7.49795 3.04915
X 2|pre dicted 12500 | - 3.66256
T 5.12870 3.55067

Figure-8. A clamped plate subject to a harmonic loading P
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Figure-10. Predicted and exact amplitudes of resonant response |U,167| with various step

Amplitude of frequency response: |Uz167|

Figure-9. Finite element model of the plate and its first mode shape
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Table-4. Sensitivities of the amplitude of resonant response|v,167): ailU 167)
e 7

. MSC/ FINITE
k NASTRAN |  DIFF,
t -4.6062 -4.5600
t -0.9962 -1.0000
ts -0.2380 -0.2359
t4 -2.4078 -2.3850
ts -5.7821 -5.7600
” -2.4078 -2.3850
t7 -0.2380 -0.2359
tg -0.9962 -1.0000
to -4.6062 -4.5600

Table-5. Using scaled step sizes of design change to compare the predicted and exact ampli-
tudes of resonant response |U,167|

Change Change
Initial normalized | normalized

“k design to a 10% to a 50%
change of t5 | change of t5

tg 0.250000 0.269916 0.349579

ty 0.250000 0.254307 0.271536

t3 0.250000 0.251029 0.255145

t4 0.250000 0.260411 0.302053

ts 0.250000 0.275000 0.375000

tg 0.250000 0.260411 0.302053

ty 0.250000 0.251029 0.255145

tg 0.250000 0.254307 0.271536

tg 0.250000 0.269916 0.349579

f; (hz) 4.429474 4.828553 6.305948

|U2167|predicted —————————— 1.447824 -0.101091

|U,167] exact 1.835057 1.505232 0.804276
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