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ABSTRACT

It is common practice (o include the gyroscopic terms for rigid rotors into the equations
of motion for the calculation of critical speeds. This procedure works well for the case in
which the rotors are connected directly to ground by elastic and'or damping elements.
All calculated eigenfrequencies are critical speeds of the rotor. If additional degrees of
freedom are included 10 model the actal support structure, then not all eigenfrequencies
are critical speeds. Many of the calculated eigenfrequencies are simply modes of the
support structure.  The procedure presented allows critical speeds to be filtered from the
set of eigenfrequencies calculated when the support structure is included in the analysis.

The methodology is used (o determine the critical speeds of the BRR 700 series aerojet
engines. .



INTRODUCTION

A rotor in an aerojet engine consists of a shaft connecting several large disks on which are
mounted the compressor and turbine blades. The shaft is usually many times more flexible
than the disks and allows the rotor to be idealize as a series of lumped masses located
along -he rotation axis connected by beams. Because the structural properties of the rotor
are rotationally symmetric, i.e. the structural impedance presented to the stationary
support is independent of the rotational position of the rotor, the idealized rotor can be
added directly to the support structure for analysis.

In addition to the structural impedance of the rotor, there also exist additional inertial
terms dependent upon the rotation speed. These inertial terms possess skew-symmetry
and can greatly influence the critical speed of the rotor. By including these terms in the
equations of motion for the coupled rotor/support structure, the critical speeds of a rotor
can be directly determined through a complex eigenvalue analysis. Unfortunately,
eigenfrequencies which are unrelated to the critical speeds are also caiculated. The
presence of these non-critical speed eigenvalues requires a technique to filter candidate
modes from the set of calculated modes.

DESCRIPTION OF GYROSCOPIC TERMS

Gyroscopic effects significantly affect the dynamic behavior of rotating equipment and
need to be included in analyses. The gyroscopic terms for a rigid rotor are dependent
upon the rotor rotation speed and the angular velocity of motion perpendicular to the axis
of rotation. The gyroscopic terms also possess a characteristic called skew-symmetry.
Angular rotation perpendicular to the rotation axis produces a moment which is
perpendicular to both the rotation axis and the angular motion. In matrix notation, these
terms appear as a skew-symmetric matrix, as shown below for rotation about the z-axis.
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Physically, the gyroscopic terms can be viewed as promoting circular angular precession
about the rotation axis. It is this effect which causes a toy top to precess if one tries to
topple it. The larger the force used to topple the top (i.e., the larger the angular velocity)
the faster the top will precess. As the top is precessing, the gyroscopic forces also provide
the necessary moment required to prevent the top from falling. As the top precesses, the
gyroscopic forces are in balance with those due to gravity (Figure 1).



Forces due to gravity Moment due to gyroscopic forces

Figure 1. Gyroscopic forces in balance with gravity forces

If the top could maintain its rotation speed and no other outside forces acted on it, then
the top could precess indefinitely.

With this view, it is easier to understand the contribution of the gyroscopic terms in
determining critical speeds. Using the above example, the rotor takes the place of the top
and the support structure replaces gravity as an opposing force. For a given rotor speed,
there exists a precession rate at which the gyroscopic and opposing forces are in
equilibrium. A critical speed is a unique situation in which the precession rate and rotor
speed coincide. For a perfectly balanced rotor with no exterior forces acting on the rotor-
support system, a rotor precessing at a critical speed is just a mathematical idealization,
similar the a single degree-of-freedom system vibrating at its natural frequency.
Unfortunately, rotors are never perfectly balanced and outside forces do act on the system.
Similar to exciting a single degree-of-freedom system at its resonant frequency, a small
rotor imbalance or a cyclic force at the rotation speed can result in large amplitude
responses. For this reason, critical speeds of rotating equipment are important.

IDENTIFICATION OF CRITICAL SPEEDS

Before a critical speed can be identified, a definition for the description of a critical speed
must be developed. The usual definition of a critical speed is: a rotational speed of the
rotor which coincides with an eigenfrequency of the rotor-support structure. This is the
definition used in the development of Campbell diagrams. In a Campbell diagram,
eigenfrequencies are calculated for given rotor speeds and plotted on the ordinate of a
graph (y-position) with the given rotor speed as the abscissa (x-position).
Eigenfrequencies with similar modes shapes are connected with lines which follow the
change in eigenfrequency with a change in rotor speed. An additional diagonal line,
starting at the origin and having a slope of one, is drawn on the graph. This line
represents the rotation speed of the rotor. The intersections of the diagonal line and the
lines connecting the eigenfrequencies are critical speeds.

Because of the skew-symmetry of the gyroscopic inertial terms, modes which contain
rotor motion split into two types:



-modes with an eigenfrequency which increases with rotor rotational speed

-modes with an eigenfrequency which decreases with rotor rotational speed.
Both types of modes exhibit rotor motion which is circular about the neutral rotation axis.
In modes with an increasing eigenfrequency., the circular motion is in the same direction
as the rotor rotation. These modes are called forward critical speeds. In modes with a
decreasing eigenfrequency, the circular motion is in the opposite direction of the rotor
rotation. These modes are called backward critical speeds.

A rotor imbalance acts as a force synchronous with the rotor speed. Therefore, only
forward critical speeds are excited by imbalance forces. Backward critical speeds can be
excited by a rotor rubbing against the casing. Since rotor imbalance is much more
common than rotor rubbing, only forward critical speeds are of interest. Backward critical
speeds are of interest only under special circumstances.

An alternate way of determining critical speeds is to include the gyroscopic inertial terms
directly in the equations of motion and perform a complex eigenvalue analysis. The
gyroscopic terms are added in a manner such that the rotor rotation speed and
eigenfrequency are identical. All modal displacements, including any motion of the rotor
about the neutral rotation axis, are at the same frequency as the rotor rotation speed.

If a rotor is connected by scalar elements directly to ground, then all caiculated
eigenfrequencies are critical speeds. If a model of the support structure is included in the
analysis, then the critical speed are intermixed with modes of the rotor-support structure.
Identification of the critical speeds is not easily done by examination of mode shapes. A
filter which identifies which modes, among all the calculated modes, are possible critical
speeds is required. One such filter is described in the following section.

CRITICAL SPEED FILTER

To determine whether the mode exhibits circular motion about the neutral rotation axis, an
error fit procedure is used. Basis vector which describe forward and backward circular

motion of the rotor about the neutral rotation axis are used in the procedure. The error is
defined as the following least-mean-squared fit:

{error} = {u} - [W]{a} )
where {u} isthe modal displacement vector
[W] is a matrix of basis vectors
{a} is the coefficient vector for the basis vectors

Minimizing the error with respect to the coefficient vector, {a}, results in
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Forward whirl at a rotor point is defined as circular motion in the direction of rotation.
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Backward whirl motion is defined as circular motion opposite the direction of rotation.
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The basis vectors for the fitting procedure contain both forward and backward whirl
motion vectors for each point on the rotor. This more general definition allows the
identification of mixed critical speed modes, in which the rotor may exhibit both 'forward'
and '‘backward' motion simultaneously.

After the components of forward and backward motion of each mode are determined, the
proportional kinetic and strain energies can be calculated. Modes with high proportional
'forward' or 'backward' kinetic or strain energy are deemed to be critical speeds.

EXAMPLE APPLICATION

The procedure described above is implemented in MSC/NASTRAN through a DMAP
alter and applied to a baseline model of the BRR 700 series aerojet engine. The engine
consists of a casing and two rotors spinning independently at different rates. An efficient
approach to the dynamic analysis of the engine is to divide the engine into these three
substructures: 1) engine casing, 2) low pressure rotor, and 3) high pressure rotor.
Coupling between the rotors and the casing is performed using appropriate bearing
stiffnesses and dampings (Figure 2 shows the bearing stiffness and damping connections).
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Figure 2. Substructures of a Dual Rotor Acrojet Engine



Each substructure was defined as a superelement and combined as a single-level
supereler:=nt structure. Both rotors were modeled using three dimensional elements and
reduced statically to points along the rotors' axis. The casing was reduced using
component modes, with boundary points at the bearing interfaces.

Rotor frequencies in the engine running range are called ‘critical' when the major part of
the proportional strain energy is in the forward whirl motion. By caiculating proportional
strain energies for each substructure (superelement), the engineer is able to separate rotor
frequencies from system frequencies. Only rotor frequencies with ‘high' proportional
strain energy need to be investigated further.

If a rotor is free of forward whirls with high proportional strain energies between 0 and
120% of take-off speed, then the engine is considered free of critical speeds. Backward
whirls may occur, but will not be excited by rotor imbalance. Figure 3 shows the
proportional strain energy of the low pressure rotor for the calculated frequencies in the

operating range. Only a few frequencies in the operating range have significant forward
strain energy.
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Figure 3. Low Pressure Rotor Strain Energy Distribution Across Spced Range

A critical rotor frequency occurs at 140% speed of the low pressure rotor, with all its
proportional strain energy in the forward motion. Its deformed bending shape, including
the high pressure rotor and casing, was animated using the general purpose program

PATRAN (Figure 4). The complex animation procedure makes possible the visualization
of forward and backward whirl motion.
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Figure 4. Deformed Shape of the System Structure for a Critical LP Rotor Frequency
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CONCLUSION

The procedure described in this paper allows critical speeds of rotating structures to be
determined directly using a complex eigenvalue analysis. In addition to calculating critical
speeds, it also allows the user to determine whether they are forward or backward whirl
speeds. Since forward whirl critical speeds can be excited by rotor imbalance, the ability
to distinguish between forward and backward whirl is important in the design of all
rotating structures. The methodology was applied to a BRR 700 series engine to
determine whether there existed forward critical speeds in the engine operating range.
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