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ABSTRACT

A classical equivalent linearization solution procedure for the geometric nonlinear random
response of structures is incorporated into MSC/NASTRAN by Direct Matrix Abstraction
Programming (DMAP). The equivalent linearization solution sequence was derived from the
existing Super Element Modal Frequency (SEMFREQ) response solution sequence. The
definition of the equivalent linear stiffness matrix in terms of the MSC/NASTRAN differential
stiffness for Gaussian random loads is presented. The required modification and inclusions
to the SEMFREQ solution sequence are discussed. Results are presented for the nonlinear
random response of a simple and a complex panel.
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Nomenclature

{a}, {A} element and system displacement vector
{Bl] linear strain matrix

[Bn] nonlinear strain matrix

(C] damping matrix

(K] stiffness matrix

K1 first-order nonlinear stiffness

K2 second-order nonlinear stiffness
[Ke) equivalent linear stiffness matrix
M} mass matrix

{P} load vector

{Q} modal response vector

u, v, w displacements

X2 rectangular coordinates

{T'} stiffness vector

{¢} strain vector

[®] matrix of eigenvectors

w frequency

Introduction

The current trends in advanced vehicle develop-
ment show a need for lighter, more economical struc-
tural components. This trend coupled with increasing
propulsion and environmental loads associated with
these vehicles has renewed interest in nonlinear struc-
tural response. This is most evident in, but not nec-
essarily limited to, the aerospace industry with such
proposed vehicles as the NASP and the high speed

civil transport. The surface panels, particularly those
that are exposed to the engine noise and jet exhaust
and those in the region of shock boundary layer in-
teractions, are anticipated to respond nonlinearily in
at least part of the flight regime as shown in figure
1. Other intense random loads may be transmitted
through the structure from engine mounts or other
hard points. To effectively and economically evalu-
ate these structural components, a practical method
of predicting their large deflection random response is
required.

There are several methods currently in use to pre-
dict the large deflection random response of structures.
A perturbation method, Crandall 1963, based on clas-
sical perturbation theory for nonlinear deterministic
motion, can be used to obtain approximate solutions
to weakly nonlinear systems. A stochastic averaging
method, Stratonowich 1967, yields approximate solu-
tions when the damping is light and the excitation
is broadband. This method has been applied princi-
pally to single-degree-of-freedom systems. The Fokker-
Plank-Kolmogorov (FPK) approach, Caughey 1971, is
the only method that yields an exact solution, but so-
lutions are only available for a few restricted classes of
problems. The numerical simulation technique, also
referred to as the Monte Carlo method, Shinozuka
1975, is the most general method and yields the best
results of all the approximate methods. A substan-
tial drawback to the Monte Carlo method is the com-
putational time required to solve realistic structural
problems. The most widely used and commercially vi-
able method is equivalent linearization (EL) , Caughy
1963. It yields good approximate solutions for the sta-
tistics of the random response of simple and complex
structures and lends itself to an incremental solution
procedure similar to the methods employed in static
nonlinear problems.
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Figure 1. Generic design environment for
a hypersonic vehicle

From the list of available methods, the EL method
of obtaining nonlinear random responses was an obvi-
ous choice for implementation in a commercial pack-
age. The technique has been used, refined, and val-
idated by many authors , Roberts and Spanos 1990,
Locke and Mei 1989, Mei and Chiang 1987, Atalik and
Utku 1976, Lin 1967. The validation of the method is
well documented by many authors for beams, plates,
and other nonlinear dynamic structures. The refine-
ments include methods for solving structural prob-
lems with thermal and acoustic loads, initial stresses
and imperfections. Techniques have been developed
for the random response of pre- and post- thermally
and mechanically buckled plates, linear and nonlinear
statically deflected panels, and various combinations
of concentrated and distributed random loads. How-
ever, the EL procedure has been applied primarily in
research or special purpose codes, a general purpose
finite.element code incorporating this procedure is not
yet available.

The MacNeal-Schwendler Corporation version of
NASTRAN (MSC/NASTRAN) was selected for this
work due to its extensive use in the aerospace and au-
tomotive industries where nonlinear random phenom-
ena are most prevalent. The equivalent linearization
procedure is being programed as a “stand alone” so-
lution sequence for version 67 using the Direct Matrix
Abstraction Programing (DMAP) language. It was
found that all the necessary components of the EL
procedure already existed as DMAP modules. The
essence of the new solution sequence therefore con-
sists of incorporating the necessary modules and it-
erative procedures into a standard MSC/NASTRAN
solution sequence for linear random analysis. The two
available solution sequences from which to work are
the Super Element Modal Frequency Response (SEM-
FREQ) and Super Element Direct Frequency response
(SEDFREQ) solution sequences.

In this paper, the large deflection finite element
formulation is first reviewed to establish the general
nonlinear equations of motion. The theory of equiv-
alent linearization is then presented and the expres-
gion for the equivalent linear stifiness is derived. An
overview of the iterative implementation of the equiv-
alent linearization procedure is presented in flow chart
form with consideration to the various methods of solv-
ing dynamic systems. The ease with which the expres-
sion for the equivalent linear stiffness is evaluated in
multi-degree-of-freedom systems is somewhat depen-
dent on the method used to form and solve the equa-
tions of motion. The evaluation of the equivalent linear
stiffness and the particulars of the programing of the
new solution sequence are presented for broad band
Gaussian loads and modal equations of motion. In
the last section of this paper, a simple plate example
is used to compare the MSC/NASTRAN EL solution
sequence with published results. A second example
demonstrates the ability of the solution sequence to
efficiently solve complex structural systems.

Finite Element Formulation

The nonlinear strain-displacement relationships
taken from classical elasticity, [Love, 1944], are:
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where u(x,y,z,t), v(x,y,z,t) and w(x,y,2,t) are the dis-
placements. The other strain-displacement relations
are written similarly.

Equation (1) is typically expressed in matrix no-

tation
{¢} = ([BI] + [Bn]){a} (2)

where {¢} is the strain vector and the matrices {Bl]
and [Bn] are the linear and nonlinear components of
strain. The vector {a} is the vector of nodal degrees-
of-freedom and is related to the displacements by the
finite element interpolation functions and the assump-
tions about the displacements. (i.e. from the classical
plate theory, u(x,yz,t) = u(x,y,t) — 242 )

Assemblage of the elements and application of the
boundary conditions follow the usual procedures. The
equations of motion based on the nonlinear strain-
displacement relations are thus

[MI{A} + [CH{A}+

[[K]+[K1{A}] + [Kg{A}{A}TH{A} - () (3)



or in more general form with

{r} = [(K]+ (K1{A} + [K2{AHA)T][{A)  (4)

MI{A}+Cl{A} +(r(A A2A)} = {P} ()

where the matrices [M], [C], and [K] are the system
linear mass, damping, and stiffness matrices. The
vector {P} is the time dependent load and K1 and
K2 are the system first and second order nonlinear
stiffnesses.

Equation (5) has no general solution when the
excitation is random. An approximate solution to
these equations is obtained by seeking an equivalent
linear system, [Roberts and Spanos, 1990}, of the form

[M]{A} + [CH{A} + [K.]{A} = {P} (6)

where [K.] is an equivalent linear stiffness matrix.

Equivalent Linear Stiffness

The equivalent linear stiffness matrix, (K], is to
be defined such that the difference between the actual
nonlinear system and the approximate linear system
is minimized. The approach may be thought of as a
statistical version of a classical least square minimiza-
tion. The error in obtaining the approximate system
is defined as

{a} = {r} - [K]{A} ()

Since the error is a random function of time, the re-
quired condition is that the ensemble averaged, expec-
tation, of the mean square error be a minimum. This
is expressed as

E[(aA}{4)"] — minimum (8)

where E[] denotes the.expectation operator. As in
the cases of classical least square minimization, the
necessary condition for equation (8) to hold true is

aE[{A}{A}T|

BK.] ®

Substituting equation (7) into equation (8) and inter-
changing the expectation and differentiation operators
yields

E[{rHAY"] = E[{AHAY] KT (10)

Using the fact that the matrix E[{A}{A}"] is symmet-
ric and positive definite, the equivalent linear matrix
is defined as

K= E[{AHAY"]) E[a)T] ()

The equivalent linear stiffness [K.] defined in equation
(11) can be directly programed in a finite element code
if the stiffnesses K1 and K2 are available and the ex-
pectation operator can be evaluated. Neither of these
two conditions is generally true. The nonlinear stiff-
nesses are generally formed in tangential or differential
form and the expectation operator requires knowledge
of the joint probability density function of the response
vector which is the unknown. Therefore, the equiva-
lent linearization solution procedure is programmed in
an iterative method and some assumptions regarding
the expectations of the response vector are required.
It should be noted that, if K1 and K2 are available,
the mean square response can be obtained directly,
[Locke and Mei, 1989}, with appropriate assumptions
for the expectation operator. In all instances cited
above, assumptions regarding the expectations of the
response vector are required. These assumptions are
usually based on a knowledge of the excitation and the
solution method used. Therefore, a discussion of the
general iterative equivalent linear solution procedures
used is presented. .

Iterative EL Solution Methods

There are two basic means to solve linear dynamic
equations of motion, one is using the physical degrees-
of-freedom and the other is to use modal degrees-of-
freedom. The first method is generally referred to as
the direct frequency response method and requires the
solving of a complex coupled system of equations in the
nodal degrees-of-freedom at each frequency of inter-
est. The second method is generally referred to as the
modal frequency response method. It involves solving
for the linear eigenvectors first and transforming the
equations of motion into modal coordinates. The re-
sulting system of equations is uncoupled and can be
easily solved at each frequency of interest.

The primary consideration as to which method
to be used for a particular linear system is based
on the computational time required. This can be
phrased as a simple question: Which will take more
time, solving one eigenvalue problem (approximately
an N cubed process) or solving some number of linear
systems of equations (approximately an N’ squared
process)? The decision as to which method to use
in an EL solution procedure is further complicated by
the iterative nature of the problem and the evaluation



of the expectations. The choice of method can greatly
simplify or complicate the process.

The direct method would seem to be the easi-
est and most straight forward to implement and the
computational time required would be simple to com-
pute. The difficulty in the direct method arises in
the assumptions regarding the expectation operator
in the expression for the equivalent linear stiffness and
the implementation of these assumptions in a general
sense. Accurate approximations of the expectation op-
erator require assumptions regarding the full set of
moments up to the fourth moments (mean, standard
deviation, skewness, and kurtosis) of the response vee-
tor in nodal degrees-of-freedom. It should be noted
that in physical coordinates, the correlations between
all the degrees-of-freedom are necessary and must be
determined.

As a simple example of the direct method, as-
sume a beam of length L with ten nodes and three
degrees-of-freedom, u, w, and 8, at each node. The
evaluation of equation (11) for the equivalent linear
stiffness requires the evaluation of the complete set of
expectations of all the nodal degrees-of-freedom to the
fourth moments. The EL solution relies on determin-
ing expressions for the third and fourth moments in
terms of the first and second moments, These may
be obtained by assuming appropriate probability dis-
tributions for the nodal displacements. In the beam
example, if the excitation is broadband, Gaussian dis-
tributed, and spatially correlated over the beam, it
can be assumed that the responses w and £ are Gauss-
ian and u is Chi-square distributed. From these as-
sumptions, an expression for the equivalent linear stiff-
ness in terms of the first and second moments of the
response can be found. However each entry in the
thirty by thirty equivalent linear stiffness matrix of
this problem could have a different coefficient repre-
gentative of the degrees-of-freedom, correlation coeffi-
cients between the degrees-of-freedom and the order
of the expectations involved. The complexity in using
physical degrees-of-freedom can be deduced from this
simple problem when it is noted that it is terms such
as the square of the slope and the in-plane displace-
ment that are strongly correlated. This entire process
is programmable but it is not easily done in a general
sense. The selection of modal coordinates will be seen
to make the evaluation of equation (11) simpler.

The modal solution method of the EL procedure
is simpler to implement than the direct method be-
cause reasonable assumptions regarding the correla-
tion of the modal degrees-of-freedom as well as their
joint distribution are possible. This is not to say that
the modal approach is without deficiencies or diffi-

culties. To illustrate the advantages and difficulties
with the iterative modal solution procedure, the sim-
ple beam problem discussed in the direct method is
used. The first difficulty arises immediately from the
linear eigenvalue problem. The extracted eigenvectors
for the simple isotropic case are functions of either the
out-of-plane nodal displacement, 'bending modes’, or
the in-plane nodal displacement, 'membrane modes’,
and not both. This is because the bending motion of
the beam is coupled to the membrane motion through
the nonlinear terms.

There are three ways to handle the decoupling
of the membrane and bending motion induced by the
use of the linear eigenvectors. The first way is to sim-
ply exclude the membrane modes from the modal re-
sponse. This is easy but not particularly accurate. A
popular corollary to this solution is used for one-, and
two- dimensional structures, Mei 1989. This proce-
dure assumes the in-plane inertia and damping to be
negligible. It is then possible to solve for the mem-
brane modes in terms of the bending modes and thus
account for the in-plane stiffness. This procedure is
efficient but highly specialized and difficult to include
in a general finite element code.

The second method is to select particular bending
modes and membrane modes to include in the formu-
lation. The difficulties that arise from this solution are
similar to those encountered in the direct method when
trying to evaluate the expectations and solving the sys-
tem of equations. In the beam problem, it is again as-
sumed that the bending is Gaussian and the membrane
is Chi-square distributed when the excitation is Gauss-
ian. The bending modes can be assumed uncorrelated
with respect to each other as can be the membrane
modes but the membrane modes are strongly corre-
lated to the square of the bending modes. The resuit-
ing system of equations is coupled and the expression
for the equivalent linear stiffness matrix is only mar-
ginally simplified with respect to the direct method.
Another difficulty with the linear modal solution pro-
cedure is that the type of modes, bending, membrane,
or otherwise are not always readily identifiable or avail-
able. Many current finite element programs use Lanc-
soz type eigenvalue solvers in which only the lowest
modes or modes within a certain range are computed.
It is difficult to construct a general program using this
method that will extract the particular eigenvectors
needed for an accurate solution.

The third modal solution method for the equiv-
alent linearization procedure uses updated or 'equiv-
alent linear’ modes. The obvious drawback to this
method is that it requires the eigenvalue problem
be solved at each iteration. The advantages of this



method are that the system of equations that are
solved at each frequency are uncoupled and that sim-
ple assumptions regarding the moments and correla-
tion of the modal responses are adequate for accu-
rate solutions. The simple beam problem discussed
in the previous solution methods could be solved with
only a small number of updated modes. These modes
would be assumed to be Gaussian distributed if the
load were Gaussian and they could also be assumed
uncorrelated. Although the means of the equivalent
linear modal amplitudes are also assumed to be zero,
this does not require that all the nodal displacements
comprising the mode shape have zero means. The re-
lationship between the mean of the in-plane displace-
ment, u, and the mean square of the slopes, 6, in the
simple beam problem, is implicitly maintained in the
equivalent linear modal approach.

Implementation

The relationship between the steps involved in the
direct, linear modal, and equivalent linear modal ap-
proaches to implementing the equivalent linearization
solution procedure are outlined in the flowchart in fig-
ure 2.for a general finite element program. The so-
lution procedure is iterative as discussed before since
the nonlinear stiffness is only available in a differen-
tial form. The convergence of the iterative procedure
is based on the Euclidian norm of the vector of the
variance of the responses. From the discussion of the
various methods available, it was determined that the
equivalent linear modal method of solving the iterative
EL procedure would be the simplest and most versatile
to implement in MSC/NASTRAN.

The equivalent linear stiffness matrix in equation
(11) must first be expressed in equivalent linear modal
coordinates in order to evaluate the expectation oper-
ator. The stiffness vector {T'(A, A%, A%)} in equiva-
lent linear modal coordinates has the form {T(Q, Q%)}
where the bar indicates a quantity transformed into
modal coordinates. The expression for the equivalent
linear stiffness with the Gaussian, zero mean, and un-
correlated modal response assumptions reduces to

(12)
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Figure 2. Flowchart for equivalent linearization
solution procedure

The partial derivatives are easily taken and yield a
linear modal stiffness matrix and a differential modal
stiffness matrix which is based on the mean square
of the modal response, Caughy 1963. The modal
representation of the equivalent linear stiffness is then

[Ke] = [K] + 3[K2(E[Q?))] (13)

This expression is not directly programmable in
MSC/NASTRAN. It must be expressed in physical co-
ordinates for two reasons: The first is that the eigen-
value problem in MSC/NASTRAN is solved in phys-
ical coordinates and the second reason is that differ-
ential stiffness matrix in MSC/NASTRAN is formed
using the physical displacements. The linear stiff-
ness matrix in the expression for the equivalent lin-
ear stiffness in physical coordinates is simply the lin-
ear stiffness matrix as assembled and computed in the
MSC/NASTRAN program. After much consideration
as to how MSC/NASTRAN computes the differential
stiffness matrix in a nonlinear static sense, it turned
out that the differential stiffness matrix expression in
physical coordinate for the equivalent linear system
is the MSC/NASTRAN differential stiffness matrix
formed using an equivalent linear displacement vector.
This equivalent linear displacement vector is given by

{A} = [®{oq} + {Ac} (14)

where {oq} is a vector of the standard deviations
of the equivalent linear modal amplitudes and [} is




the matrix of normalized eigenvectors. The standard
deviation of the modal amplitudes is always positive.
The sign convention of the physical displacement is
determined by the eigenvectors. The vector {Ao} is
the mean displacement obtained from a static solution
sequence. The matrix of eigenvectors is normalized
such that the amplitude of each eigenvector in the
matrix is unity. The final expression for the equivalent
linear stiffness is then

(Ke] = [K] + 3(K] (15)

where [Kpg] is the standard MSC/NASTRAN differen-
tial stifiness matrix.

ELMFREQ DMAP

The Equivalent Linearization solution sequence
was written by significantly rewriting the MSC /NAS-
TRAN delivered SOL 111 - Superelement Modal Fre-
quency main subdmap sequence. Minor alterations in
the subdmaps of Phase 1, preprocessing procedures,
and Phase 3, post processing procedures sections of
the MSC/NASTRAN program section were also re-
quired. The modifications to Phase 1 of the program
are presented first and the substantial rewriting of the
main subdmap along with the Phase 3 modifications
are discussed concurrently. A discussion of new user
defined parameters for both convergence control and
output requests is then presented.

To incorporate this new capability into MSC/
NASTRAN, the pre-processing sequence, Phase 1 has
to be altered to generate the nonlinear element sum-
mary tables. This was done by setting the logical pa-
rameter NONLNR. to TRUE in the call to SUPERL
NONLNR was set TRUE for Phase 1 only and not
Phase 2 or 3, because linear data recovery is required
in SUPERS. Due to this modification, it was required
that the element summary table, ESTL, for linear
analysis, not generated when NONLNR is TRUE, be
equivalent to the element summary table, EST, gener-
ated when NONLNR is TRUE. This equivalence was
programmed in subdmap SEMG. '

The alterations to the main SEMFREQ subdmap
consist of writing an iterative procedure around the
frequency response solution modules, Phase 2 and
post-processing subdmap SUPER3. Subdmap SU-
PER3 is included in the iteration loop because the
rms values, which are necessary as input to the dif-
ferential stiffness modules, are obtained from module
RANDOM in Phase 3.

The maximum rms displacement with nonlinear
stiffness effects can be extracted from the data base of

PSDF in module RANDOM in subdmap SEDRCVR.
The updated displacement vector is formed by mul-
tiplying the maximum rms displacement by the up-
dated mode shape. In order to do so, one deflection
point number has to be obtained first by asking for
XYPRINT (or XYPLOT) in the control deck of the
MSC/NASTRAN data cards.

If the separate modal responses are needed, the
individual modes can be extracted after the rms re-
sponse of the structures is calculated. Each mode is
then normalized to unity for the largest component
of the eigenvector. The actual rms response of each
mode is obtained by multiplying the rms response by
the normalized eigenvector. The updated response of
the structure can be calculated by using superposition
of the modes. This procedure entails the assumption
that the modes and modal responses are independent.

To implement the iterative procedure, some of the
files needed for the next iteration have to be saved.
The module FILE to save or overwrite files is used.
The linear equations of motion are solved first and the
linear displacement vector {A} is obtained. If the pa-
rameter LGDISP is greater than —1, the geometric
nonlinear stiffness matrix [Kg} (KDJJ in the DMAP)
is calculated by applying this linear displacement vec-
tor and reduce to KDDD. (If the parameter LGDISP
equals —1, only the linear frequency response is cal-
culated.) The equivalent linear stiffness matrix (K]
in equation 11 now consists of two matrices: a linear
stiffness matrix [K] and a differential stiffness matrix
[Kg]. This equivalent linear stiffness matrix is then
used to solve for the linearized frequency and updated
mode shape. By enclosing subdmap SUPERJ inside
the iterative loop, the iterative process can now be re-
peated with this updated displacement vector. With
each iteration, the updated physical coordinate can be
obtained by multiplying maximum rms displacement
by the normalized mode shape. The iterative proce-
dure will terminate if the rms displacement norm is
achieved.

This iteration method can be used to determine
the rms displacements; however, it is slow to converge.
An improved method for speeding up the convergence
is to use an underrelaxation approach where displace-
ments are not updated to their full values but instead
the scale of the full values after each iteration. The
user defined parameter BETA is introduced to scale
the updated displacements. If the nonlinearity is mild
to moderate, the convergence of the iteration proce-
dure is faster for 0.5 < BETA < 1.0. If the nonlinearity
is severe, the convergence of the iteration procedure is
faster for 0.0 < BETA < 0.5.

There are two user defined parameters for conver-



gence control within the iteration loop. MAXITER
defines the allowable maximum number of iteration
and MAXNORM defines the maximum allowable dis-
placement norm. If the iteration count exceeds MAX-
ITER or if the error norm of the displacements is less
than MAXNORM, the iteration procedure will stop.
There is a warning message if the solution is not con-
verged after the MAXITER iterations and the job will
be stopped. There two ways to handle convergence
errors, firat, by increasing the MAXITER number or
choosing the different BETA which is less than the
previous chosen BETA.

There is no rms strain response obtained from
frequency random analysis of SOL 111. If rms element
strain is required, user defined parameter RMSTRAIN
has to be 1. For this case, the STRAIN=ALL is needed
in the control deck and the strains will be calculated.

Examples

The capabilities of the equivalent linearization so-
lution sequence implemented in MSC/NASTRAN are
demonstrated by two examples, In the first exam-
ple, the equivalent linear response of a simple beam
computed by the new DMAP is compared with pub-
lished results. In the second example, the thermal-
acoustic response of a generic thermal-acoustic pro-
tection panel is computed. This type of panel configu-
ration has been under investigation for possible use in
hypersonic aircraft. The solution procedure employed
requires the equivalent linearization solution sequence
to be restarted using the results and data base from a
linear thermal analysis.

Example 1:

A 12 in. x 2 in. x 0.064 in. aluminum beam
with first clamped and then simply supported bound-
ary conditions is subjected to uniformly distributed
acoustic excitation. The equivalent linear rms center
beamn displacements are predicted for excitation lev-
els of 90 dB to 130 dB using the ELMFREQ solu-
tion sequence. Figure 3 shows the comparison of these
predictions to those published by Prasad, 1987, de-
noted EL in the figure, and Locke, 1989, denoted FE
in the figure. Excellent agreement between the ELM-
FREQ solution sequence and the published results is
indicated.

Figure 3. Effect of acoustic excitation level on
maximum deflection for beams.

Example 2:

A hexagonal thermal protection system panel sim-
ilar to the cutout in figure 1 was subjected to both
thermal and acoustic loads. The panel is composed of
an eight-ply carbon-carbon stand-off panel and an alu-
minum, graphite/epoxy honeycomb substructure con-
nected by seven titanium rods (posts). The substruc-
ture has an aluminum core sandwiched between an
aluminum and a graphite/epoxy face sheet. The di-
mensions of the panel are given in Table 1, and the
finite element mesh is shown in figure 4. The finite
element model is comprised of 804 triangular elements
and seven bar elements with a total of 622 nodes.

The boundary conditions imposed on the panel
were designed to minimize thermal stresses and are
summarized for each component. The edges of the
carbon-carbon panel are constrained in the perpen-
dicular and tangential directions, the out-of-plane and
radial displacements, only. The actual boundaries at
these edges are more complex and difficult to model.
The choice of “simply-supported” is a compromise for
gimplicity. The edges of the substructure are con-
strained in all rotations and translations. This bound-
ary condition is more indicative of the boundaries im-
posed in an experimental setup. The two panels are
connected by the seven posts. The post connections
to the carbon-carbon panel were modeled as pin joints
using MPC bulk data cards. The three translations at
the top of the posts were equivalent to the three trans-
lations at adjoining locations on the carbon-carbon
panel. The connections between the posts and the sub-
structure were also modeled using MPCs. The center
post connection was modeled as a rigid link, i.e. all
three translations and the two rotations at the lower
end node of the post were equivalent to the translation



and rotations of the adjoining node of the substruc-
ture. The remaining post connections to the substruc-
ture were also modeled as pin joints.

Table 1 Panel dimensions

Radius 13.0 in.
Overall height 2.5 in.
Radius to posts 8.0 in.
Carbon-carbon thickness 0.091 in.
Substructure thickness 0.375 in.
Center post radius 0.1875 in.
Qutter post radii 0.125 in.

A 2000°F temperature load was applied to the
carbon-carbon panel and 200°F load was applied to
the posts and substructure. The thermal displace-
ments and stresses were predicted using SOL 101 and
are plotted in figures 5 and 6. The carbon-carbon
panel results are essentially those of a stress free ther-
mal expansion while the substructure shows a mod-
erate compressive thermal stress with little thermal
displacement. The equivalent linearization solution
sequence was restarted using the data base from the
static thermal solution with the initial stresses and dis-
placements. The rms thermal-acoustic displacements
and stresses were predicted for a broadband acoustic
excitation of 150 dB uniformly distributed over the
carbon-carbon panel. These rms displacements and
stresses are plotted in figures 7 and 8. The solution
sequence converged in four iterations with the conver-
gence enhancement parameter BETA set to 0.5 and
the default convergence criteria. '

The level of nonlinearity in the response is typi-
cally measured in several ways. The two most common
are the ratio of the equivalent linear fundamental fre-
quency to the linear fundamental frequency, frequency
ratio, and the ratio of the equivalent linear maximum
rms displacement to the linear maximum displace-
ment, amplitude ratio. For this particular problem,
these ratios were 1.19 and 0.414 respectively. These
ratios are typical of moderate to extreme geometric
nonlinearity.

Figure 4. Finite element model

Conclusions

An equivalent linearization procedure is incorpo-
rated into MSC/NASTRAN to predict the nonlinear
random response of structures. An iterative process
is used to determine rms displacements. Numerical
resuits obtained for simple plates and beams are in
good agreement with existing solutions in both lin-
ear and linearized cases. The versatility of this im-
plementation of equivalent linearization procedure in
MSC/NASTRAN enables the analyst to determine the
nonlinear muitiple mode random responses for com-
plex structures. ‘
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