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ABSTRACT

The goal of shape optimization is to find a best shape of a structural
component so as to minimize an objective function subject to various design
constraints including functional and manufacturing constraints. Version 68 in
MSC/NASTRAN provides a tool to solve shape design problems systematically
and automatically. This paper will first define the general shape optimization
problem. Then, a new user interface to generate basis vectors is described.
Through several example problems, the paper shows that the general shape op-
timization capability in MSC/NASTRAN can optimize complex shapes of two-
and three dimensional engineering components.
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1. INTRODUCTION

Shape optimization involves determination of the shape of a structure so as to
minimize an objective [unction subject to design constraints. In addition to con-
straints such as displacements, stresses, or natural frequencies, geometry-preserving
constraints such as straight lines remaining straight, circles remaining circular are
needed to satisfy functional and manufacturing requirements.

Shape optimization has been an active research area since 1973 when work in
this area was initiated by Zienkiewicz and co-workers [1-2]. Recent advancement in
design sensitivity analysis, finite element methods, geometric modeling and structural

optimization techniques makes shape optimization a viable computer-aided design
product [3-9].

A general shape optimization capability is being developed and will be available for
Version 68 of MSC/NASTRAN. The purpose of this paper is to demonstrate certain
features of this capability. First, the shape optimization problem is defined. Then,
a new user interface to define basis vectors is described. Finally, several example
problems are solved.

2. PROBLEM DEFINITION

Let X = [X1, X5, -+, Xndw] where ndv is the number of design variables. A shape
design problem is defined as finding a set of shape design variables X so as to

minimize F(X) (1)
subject to gj(ia ’LL) < 0 ] = 17 e, (2)
X< xt<x? i=1,---,ndv (3)

where [ is an objective function, g; are design constraint functions and wu is the
displacement (or other) response. Since f and g; are often non-linear and implicit



functions of design variables, they are evaluated using finite element analysis. In
MSC/NASTRAN, f and g; can be defined either using direct responses from analysis
solutions or using user-defined synthetic responses [10].

One key issue in shape optimizalion is to describe the continuous shape change
with a finite number of design variables. The way to parameterize the shape affects the
shape optimization process, such as design convergence, mesh distortion, and the final
optimum shape. The next section will discuss the issue of shape parameterization.

3. SHAPE PARAMETERIZATION

In order to characterize the continuous shape change by a finite number of design
variables, the reduced-basis method [11-12] has been implemented in MSC/NASTRAN
in which a few of basis vectors are used to sufficiently describe shape changes of bodies
having complicated geometries in two or three dimensions. Define g a shape veclor
which contains x-, y-, and z- coordinates of all grid points in a finite element model.

Let g° represent the initial shape and g™ the updated shape. Then the change in
shape is parameterized as

ndv

gnew:g—o_i_ZXi.Id_}_Q_ (/1)

=1

where T is the i-th basis vector. Basis vectors establish a direct relationship between
the change in design variables and the change in grid point locations. The vector ¢
is a constant off-set vector which ensures ¢"* = g° when X = X°. From Eq.(4), one
sees that the i-th basis vector is the grid sensitivily with respect to the i-th shape
design variable:
; dgnew
r- )

Eq.(4) states that the shape at any design cycle, including the final optimum
shape, is a linear combination of basis vectors. Inappropriate selection of basis vector
may yield an unacceptable design [9]. Therefore, it is important to generate effective
and satisfactory basis vectors in shape optimization.



4. NEW USER INTERFACE FOR GENERATION OF BASIS VECTORS

In Version 67 of MSC/NASTRAN, basis vectors are generated through DVGRID
bulk data entries. Each DVGRID bulk data eniry relates the change in a shape
design variable to the change in the location of a particular grid point. When a
design problem is modeled with hundreds of grid points, a large number of DVGRID

bulk data entries are required to define basis vectors which are less eflicient and prone
to errors.

A more efficient and user-friendly interface has been implemented which allows for
direct input of basis vectors. It is based on the natural (deformation-based) approach
which generates basis vectors through a set of displacements [5]. To illustrate the
concept, a culvert problem is used here. The primary (original) structure of a culvert
(half-symmetry) is shown in Fig.1a. It is desired to change the shape of the initially
circular hole so as to minimize the volume of structure while limiting von-Mises stress
on each element.

An auxiliary (dummy) structure is created as shown in Fig.1b which has the same
topology as the primary structure but has different boundary and loading conditions.
Different material properties can also be used. Outside edges of the auxiliary structure
arc fixed to maintain straight edge requirements. Additional six CBAR elements are
added on the boundary to maintain smoothness of the shape change.

The motion along the y-direction of grid point 1 is selected as a shapc design
variable. To relate the change in the shape design variable to the change in the
interior grid point locations, a point load (or enforced displacement) is applied as
shown in load case 1 of Fig.2. The resulting static deformations are defined as a
basis vector (1" in Fig.3). Similarly, basis vectors 7% through T* are generated by
corresponding load cases in Fig.2.

The auxiliary finite element analysis is performed in a separate run and these
displacements are stored as a matrix in the MSC/NASTRAN database. Then, in the
current run, they are retrieved by the DBLOCATE statement in the file management
section (FMS). A DVSHAP bulk data entry is provided to relate a shape design
variable to one or more columns of the retrieved displacement matrix. In addition,
DVGRID bulk data entries can also be integrated with these basis vectors.

Once basis vectors are generated, a user can display or plot them using MSC /XL or
NASPLOT. This is an indispensable stage in shape optimization where a user can usc



an interactive graphic tool to visualize basis vectors and infuse one’s understanding
of the problem physics and engineering judgement into the design process.

It should be noted that since basis vectors are generated in a separate run, they
are not updated during the design process although the geomtry of the primary
structure is npdated iteratively. A more automated user interface is being developed
in MSC/NASTRAN V68 which allows for generating basis vectors by incorporating
the auxiliary model in the same optimization run [13-14]. Thus, basis vectors can be
updated iteratively.

5. EXAMPLE PROBLEMS

Three example problems obtained from literature are presented. Basis vectors are
generated using the implemented user interface. MSC/XL is used to visualize basis
vectors and final shapes.

5.1 Culvert Problem

The culvert problem has been shown in Fig.la and it is obtained from Ref.[15].
Seven basis vectors are generated by an auxiliary analysis have been stored in the
database (four of them are shown in Fig.3). Then, these basis vectors are retrieved
in the current run. Required FMS statements and one of DVSHAP bulk data entries
are listed below:

ASSIGN Fl='culvert. MASTER’
DBLOCATE DATABLK:(UG,BGPDTS,EQEXINS,CSTMS), LOGICAL=F1

DVSHAP 111.0

After eight iterations, a minimum volume design is obtained with 19% reduction.
The optimum shape is shown in Fig.4. The volume history and the maximum con-

straint value history are plotted in Fig.5. The result agrees well with that given in
Ref.[15].

5.2 Skewed Plate Problem

This problem is obtained from Ref.[16] and its finite element model is shown
in Fig.6. The middle hole is initially designed for certain functionality. To reduce
the effect of stress concentration on the boundary of the hole, two outer holes are
introduced. In addition, the thickness of the plate is also to be designed.
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This is a mixed optimization problem with both property and shape as design
variables. The design task is to determine the size and location of two outer holes
and the thickness of the plate so as to minimize the maximum von-Mises stress on
the boundary of the middle hole. It also requires that the initial weight of the plate
be not changed during the design process. Both size and location of two holes are
varied symmetrically.

To meet these design requirements, an auxiliary structure is created in which
outside edges and the middle hole are fixed. The enforced displacements applied on
the boundaries of two holes yield the basis vector as shown in Fig.7a. The effect of the
basis vector is to vary the size of two holes. The second basis vector is generated with
a rigid element (RBE2) which connects all grid points on each hole. For example,
the new location of the upper hole is controlled by the motion of grid point 1. The
corresponding basis vector is given in Fig.7h.

The objective function is defined as the summation of von-Mises stresses ol el-
ements near the middle hole. In addition to the weight constraint, two gcometry
constraints are defined for the size of two outer holes: the maximum size of two holes
are 23 mm. The problems converges after four design cycles. The objective func-
tion has been reduced by 12%. The maximum von-Mises stress is reduced from 223
MPa to 193 MPa. Stress plots are shown in Figure 8 for both the initial and final
structures. The constant weight constraint is satisfied.

Figure 9 plots the optimum shape of the skew plate. The diameter ol two holes are
increased from the initial value of 14 mm to the final value of 23 mm. The location
of tow holes has be changed from ¢ = 29 mm to a = 35 mm. The final thickness of
the plate is increased from 6.0 mm to 6.9 mm.

5.3 Crimping Device Problem

A half-symmetry finite element model of the cable crimping device is shown in
Fig.10a. The problem is reproduced from Ref.[8]. The external surface of the lower
portion of the part is held by a fixture (hatched lines). A hydraulic cylinder exerts 5
tons of force as shown. The I-type stiffener on the back side is designed to increase
the strength of the device. It is desired to minimize the weight of the part subject to
element stress constraints. In addition, the maximum y-displacement of grid point
475 and the maximum x-displacement of grid point 483 are constrained. Further, it
is requited to preserve the shape of the cylindrical surfaces and of the beam stiffener.



The auxiliary structure for this 3-D part is shown in Fig.10b. Hatched lines
represent the fixed boundary. The first shape design variable is the motion along z-
direction of the side surface on the middle portion of the device and the second shape
design variable is the y-motion of the top surface. Two basis vectors are shown in
Fig.11. Smoothness of the changing surfaces is maintained by covering the part with
plate elements. The optimum shape is shown in Fig.12 with 10 % weight reduction.

6. CONCLUSIONS

Certain features of the shape optimization capability in MSC/NASTRAN V68 are
demonstrated. A new user interface to generate basis vectors is discussed. Through
scveral example problems, it is shown that the general shape optimization capability
in MSC/NASTRAN can optimize complex shapes of two- and three dimensional
engineering components.
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Figure 1. Culvert Problem: (a) Primary Structure, (b) Auxiliary Structure
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Figure 2. Load SUBCASE in Auxiliary Structure
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Figure 3. Basis Vectors Generated from Auxiliary Loads in Figure 2.




Figure 4. Optimum Shape of Culvert
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Figure 5. Design History Plots for the Culvert Problem:

(a) Volume, (b) Maximum Constraint Value
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Figure 6. Primary Structure of A Skew Plate
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Figure 7. Basis Vectors for Skew Plate for (a) Size of Outer Holes, (b) Location of Outer Holes
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Figure 8. Stress Contour Plots for the Skew Plate:

(a) Initial Shape, (b) Optimum Shape
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Figure 9. Optimum Shape of Skew Plate
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Figure 10. Cable Crimping Device: (a) Primary Structure, (b) Auxiliary Structure
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Figure 11. Cable Crimping Device: (a) First Basis Vector, (b) Second Basis Vector
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Figure 12. Optimum Shape of Cable Crimping Device



