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ABSTRACT

Conventional finite-element—based structural shape optimization requires the calculation
of grid sensitivities which are much more expensive to compute than size sensitivities. This
paper presents an alternate method of shape optimization which is based on using size sen-
sitivities (computed using MSC/NASTRAN, Version 66A) to guide shape redesign. In this
method, a thin layer of plate elements is cast on selected free surfaces of structures mod-
eled with solid elements, or in the case of structures modeled with plate elements, selected
free edges are covered with a thin lining of beam elements. While the performance of the
structure remains virtually unaffected by introducing these nearly zero section elements, the
sensitivities of the structural response with respect to the thickness of these elements provide
qualitative insight on the behavior of the structure as well as a quantitative basis for shape
optimization. This paper also addresses the challenge of calculating parameter—based shape
sensitivities (e.g., sensitivity with respect to a shaft diameter, or a shaft fillet radius) from
the computed free-field size sensitivities. The method is applied to a pin geometry under
two different static loading conditions.
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Introduction

Conventional finite~element—based structural shape optimization requires the calculation of
grid sensitivities. These sensitivities give quantitative measures on how the structural re-
sponse varies as the coordinates of a grid point or a grouping of grid points are varied. Haftka
and Grandhi [1] give a survey of the methods currently used for calculating grid sensitiv-
ities. Briefly, grid sensitivities are calculated either by differentiation of the finite element
modcl, or by differentiation of the continuum equations. The former method has proven to
be computationally expensive, while the latter method leads to numerical difficulties due
to the need for the calculation of boundary integrals. The use of domain integrals instead
of boundary integrals to alleviate the numerical difliculties results in calculations which are
nearly as expensive as the former method.

An alternate method for shape optimization was proposed by Mikaili and Bernard [2].
In this method, a thin layer of plate elements is cast on selected free surfaces of struc-
tures modeled with solid elements, or in the case of structures modeled with plate elements,
selected free edges are covered with a thin lining of beam elements. This is shown schemati-
cally by Figures 1 and 2. Iinite element pre-processors (see, for example, Ref. [3]) typically
provide efficient means of creating these elements on the free surfaces of user—selected ele-
ments. While the analysis results remain virtually unallected by introducing these nearly
zero section (NZS) elements, the sensitivities of the structural response with respect to the
thickness of these elements provide qualitative insight on the behavior of the structure as
well as a quantitative basis for shape optimization. Furthermore, these sensitivities are size
sensitivities which are computed at a much lower computational cost than grid sensitivities.

Mikaili and Bernard [2] applied the NZS method to a cantilever beam under a transverse
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Figure 2: NZS beam elements lining the free edges of plate elements

gravitational load. Figures 3 and 4 show the 20” long, steel beam (modeled with hexagonal
solid elements) with an initial uniform 3” X 3” cross—section, and the 0.05” thick plate
elements coating the four sides of the beam. Figure 5 presents the contour plot of the
sensitivity of the free end deflection with respect to the thickness of each NZS plate element.
The new beam shape of Figure 6 was derived from these sensitivities and a grid movement
formulation based on closed form, algebraic relations. Subsequent remeshing and finite
element analysis of the new beam indicated a 63% reduction in the free end deflection.

In this application it was assumed that there were no imposed geometric constraints.
In this “free-field” approach, the sensitivities were used directly to modify the location of
the surface nodes with no geometric constraints on the movement of the nodes. However,
oftentimes, due to manufacturing, aesthetic, or other considerations, structural shape opti-
mization is limited to keeping the general shape characteristics of the structure unchanged.
These constraints lead to the fact that only changes in the values of the dimensional pa-
ramcters of the structure (e.g., a shaft diameter, or a fillet radius) are allowed. Therefore,
there is a need to translate the freefield NZS sensitivity information to parameter—based
sensitivities. This paper introduces a methodology for the formulation of parameter-based
shape sensitivities from free-field size sensitivities.

Formulation of parameter—based shape sensitivities from free—
field size sensitivities

Figure 7 shows a two dimensional cross section of a stepped shaft and the relocation of the
surface nodes as the diameter of one section is changed from d; to d,. Note that the mesh
density is the same for the initial and modified designs. For example, there is an equal
number of elements resolving the fillet region for both designs.

This criterion on the mesh makes it important to have access to an automated, parameter—
based finite element pre-processor. There are many such programs available commercially.



Figure 3: Finite element model of a 3” X 3” X 20” cantilever beam

Figure 4: 0.05” thick NZS elements coating the sides of the beam (elements shrunk for
display purposes)
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Figure 5: NZS sensitivities for the initial beam



~ Figure 6: Modified cantilever beam

Figure 7: Relocation of shaft surface nodes with a change in shaft diameter (2D profile)
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Figure 8: Effective matcrial addition (2D)

(See, for example, Ref. [3].)

It should also be noted that the mesh for the modified design is not necessarily used
for finite element analysis. This mesh is only used in calculating the displacement of the
centroid of each finite element as a result of a change in one or more dimensional parameter.

As Figure 7 shows, the centroid of each (kth) NZS element undergoes a displacement of
V pcg,- An effective thickness, Vi, can be calculated by projecting V Acy,, on the unit vector
normal to the element in its initial configuration:

Vi :KAcgk'ﬁk (1)

Figure 8 gives a graphical representation of this equation. With the normal vector defined
to point outward, a positive value from Equation 1 corresponds to addition of material while
a negalive value suggests removal of material.

The effective thicknesses, Vi, can then be used in a first order Taylor series expansion
to calculate a predicted response for the lth response variable, R,

N,
* OR
R, =R, + z "a‘*lvk (2)
k=1 Uk

where R, is the original response, and —g% is the sensitivity of the [th response variable with
respect to the kth NZS thickness.
Parameter-based sensitivities can, in turn, be calculated using:

9k = Ry, - Ry, (3)
dpi  pi, — 1,

where p; represents a dimensional parameter (e.g., a shaft diameter) with p;, and p;, corre-
sponding to the proposed and the original geometries, respectively. Once parameter—based
sensitivities are calculated, first order structural optimization techniques (see, for example,
Ref. [4, 5]) can be used for optimization.



Figure 9: Relocation of shaft surface nodes with changes in shaft diameter and fillet radius
(2D profile)

It is important to note that Equalion 2 can be used with several simultaneous changes
in dimensional parameters. For example, Figure 9 shows a case where both the fillet radius
and the shaft diameter are changed. Equations 1, and 2 can still be used to predict the
response of the structure. The p; parameter of Equation 3 may then be some independent
variable which determines both the shaft diameter and the fillet radius.

Case study: pin under point loading

The pin geometry of Figure 10 will be used as a case study. The geometry and the loading
are symmetric across the midplane of the pin; therefore, as shown by Figure 11, a half-pin
finite element model is used in the analysis. Symmetric boundary conditions are applied to
the midplane nodes. The surface nodes lying along the threaded portion are constrained in
all degrees of freedom. This figure also shows NZS plate elements coating the free faces of the
solid elements. The interior nodes are only coupled by solid elements; therefore, they have
no rotational degrees of freedom. However, the surface nodes are shared by plate elements
as well as solid elements. These nodes have rotational degrees of freedom in addition to their
translational degrees of freedom.

The first loading condition considered for the pin is a point load applied in the transverse
direction at the top of the stem. Figures 12, 13, and 14 show contour plots of the maximum
principal stress and the sensitivity of the stress in the solid element with the highest tensile
stress, oy, with respect to the thickness of the plate elements of Figure 11.

A first order prediction model for oy, is constructed using Equation 2:

on, = op. + % —(?—UEV (4)
hyp ho =~ 5vk k

with Vj, representing the effective thickness for the kth NZS plate element computed using
Equation 1. ‘

Figure 15 shows the relocation of the surface nodes of the pin as the stem radius is
reduced to 3.75 mm from its nominal value of 4.875 mm. For this change in the pin geometry,
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Figure 10: Pin geometry

Figure 11: Pin finite element model and NZS plate elements
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Figure 12: Maximum principal stress distribution (point loading)
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Figure 13: Sensitivity distribution, tension side (point loading)
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Figure 14: Sensitivity distribution, compression side (point loading)
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Figure 15: Relocation of the pin surface nodes (2D profile)

Table 1: Stress results for the pin geometry under point loading

Design Stem Fillet FEA o}, | Predicted o, | Deviation
number | radius (mm) | radius (mm) | (kPa) (kPa) (kPa)
1 (nominal) 4.875 7.5 2372.7 — —
2 3.75 7.5 5137.1 4574.3 562.8
3 3.75 5.0 5282.8 4511.7 771.1
4 6.0 5.0 1323.0 108.6 1214.4

Vi assumes a negative value for the elements along the stem and the fillet and a value of
zero elsewhere. This new design is designated as Design 2 in Table 1.

Table 1 shows that for Design 2, there is a 562.8 kPa deviation between the o, predicted
using Equation 4, and the corresponding value calculated by a FEA re-analysis. This table
also presents calculations for two additional pin designs. In Design 3 the fillet radius is
changed to 5.0 mm from its nominal value of 7.5 mm while the stem radius is set equal to
that of Design 2. The deviation between predicted and calculated stress is 771.1 kPa which
is slightly higher than that of Design 2. In Design 4, where the stem radius is increased to
6.0 mm, the deviation is 1214.4 kPa.

To investigate reasons for these deviations, several more FEA runs were conducted with
the fillet radius kept constant at the nominal value of 7.5 mm and the stem radius varying
from 3 mm to 7 mm. Figure 16 presents results. As expected, the accuracy of the linear

13
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Figure 16: FEA results and sensitivity-based predictions (point loading)

predictions diminishes for values of stem radius that are far from the neighborhood of the
nominal value.

It should be emphasized that the predictions of Table | were made based on the orig-
inal FEA and the corresponding design sensitivity analysis (DSA). For this 2429 degrees
of freedom structure, FEA and DSA took 3.0 and 2.9 minutes of CPU, respectively, on a
DECGstation 5000. Note also that the design changes are not limited to changes in a single
dimensional parameter; i.e., the stem radius and the fillet radius can be changed simultane-
ously. Therefore, a linear model which allows prediction of stress with changes in the stem
radius and/or fillet radius is built at a computational expense of 2.9 minutes, or roughly the
cxpense of an additional FEA.

The predictions of Table 1 provide valuable insight on the behavior of the pin. In
particular, it is apparent that o), has a significant dependence on the stem radius, but
changes in the fillet radius are less important.

Case study: pin under gravitational loading

The loading is changed to a transverse gravitational loading to produce the stress distri-
bution shown by Figure 17. Figure 18 shows the contour plot of %ﬁ for the pin under
gravitational loading. Comparison with Figures 13 and 14 suggests that in the fillet region,
the sensitivities under gravitational loading are very similar to corresponding sensitivities
under point loading.

However, the sensitivity distribution along the stem of the pin is quite different under
gravitational loading. Figure 19 gives the sensitivities along the upper 2/3 of the stem for
both loading conditions. Under point loading the sensitivity is zero for all NZS elements

14
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Figure 17: Maximum principal stress distribution (gravitational loading)
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Table 2: Stress results for the pin geometry under gravitational loading

Design Stem Fillet FEA oy, | Predicted o}, | Deviation
number | radius (mm) | radius (mm) | (kPa) (kPa) (kPa)
1 (nominal) 4.875 7.5 2371.2 — —
2 3.75 7.5 3056.1 3504.4 448.3
3 3.75 5.0 3233.8 3437.2 203.4
4 6.0 5.0 2053.9 | . 1170.9 883.0

which are far enough removed from the fillet region. For gravitational loading, the corre-
sponding sensitivities are positive and assume their largest values at the free end of the pin.
These sensitivities suggest that under gravitational loading, the predominant effect of addi-
tional material at the free end is to increase the loading which in turn has an unfavorable
effect on the response. '

The stem radius and fillet radius combinations of Table 1 are again used for the pin under
gravitational loading. Table 2 presents the results. For ease of comparison, the magnitude
of the gravitational loading is set such that o} for the nominal geometry is roughly equal to
oy, for the corresponding geometry under point loading.

As was the case with point loading, the predictions of Table 2 show that the stem
radius has a larger inflluence on o, than the fillet radius. However, the level of this influence
is less severe under gravitational loading. For example, from Design 1 to Design 2, where
the stem radius is reduced from 4.875 mm to 3.75 mm, the stress due to the point load is
predicted to increase from its nominal value of 2372.7 kPa to a value of 4574.3 kPa, while the
corresponding predicted increase under gravitational loading is from 2371.2 kPa to 3504.4
kPa. Using Equation 3, this leads to:

Jdoy,
or,

) = —1957.0 kPa/mm
point load

ar (5)

8”h> = —1007.3 kPa/mm
grauv. load

where 7, represents the stem radius. This trend is expected since under a gravitational
loading decreasing the stem radius has a dual effect of reducing the load as well as reducing
the load carrying capacity, while under a point loading such a change only reduces the load
carrying capacity. ’

Figure 20 presents the result of FEA runs corresponding to those given by Figure 16.
Compared to the response under point loading, the stress versus stem radius relation exhibits
a much more linear behavior under gravitational loading.

Under a gravitational load, the FEA and DSA for the nominal design required 3.2 and

18
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Figure 20: I'EA results and sensitivity—based predictions (point loading and gravitational
loading)

5.9 minutes of CPU, respectively, on a DECstation 5000 (compared with 3.0 minutes for
FEA and 2.9 minutes for DSA under a point loading).

In summary, application of the parameter—-based NZS method to the pin structure leads
to the conclusion that the maximum tensile stress is much more heavily dependent on the
stem radius than the fillet radius. It also shows that the dependence is stronger under a
point load than a gravitational load.

Conclusions

This paper presented an extension of the shape optimization method introduced by Mikaili
and Bernard [2] to design scenarios where the general shape characteristics of the structure
must remain intact. Only relatively inexpensive size sensitivities are used.

The method is based on the introduction of a thin layer of elements, so—called NZS
elements, on selected free surfaces of an existing finite element model of a structure. For
structures modeled with solid elements, plate elements are used to coat the free faces of solid
elements, while for structures modeled with plate elements, beam elements are used to line
the free edges of plate elements. Since NZS elements are very thin, the incorporation of these
elements does not significantly change the responsc of the structure. However, sensitivities
of the response with respect to the thickness of these elements provide qualitative insight on
the behavior of the structure as well as a quantitative basis for shape optimization.

Application of the method to a pin structure under two different static loading conditions
showed that the method provides an effective and efficient basis for sensitivity-based shape
optimization.
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