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ABSTRACT

The semi-analytic method has been adopted for shape seﬁsitivity calculations
because it does not require special code for analytic derivatives of element ma-
trices. However, this method may have serious accuracy problems for which
several approaches have been proposed. These approaches, however, are ei-
ther lack of generality or difficult to be integrated with a general-purpose FEM
package.

Here, an effective approach to the problem has been developed in which an
iterative algorithm is used. It not only improves the accuracy but also provides
error estimators so as to ensure the quality of calculated sensitivities. In addition,
it can be easily integrated with MSC/NASTRAN. In this paper, the basic idea
of the approach is first described. Then, a general algorithm based on the
approach is given. Finally, its effectiveness is shown through numerical results.
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1. INTRODUCTION

The semi-analytic method has been adopted in MSC/NASTRAN for shape sensi-
tivity calculation because it does not require analytic derivatives of element matrices
which depend on element shape functions. Since it is not easy or not possible to ob-
tain analytic expressions for some advanced elements, all the elements are processed
with semi-analytic method in design sensitivity analysis [1]. However, this method
may have serious accuracy problems [2]. References 2 through 8 have proposed sev-
eral methods to address the problems. These approaches, however, are either lack of
generality or difficult to be integrated into MSC/NASTRAN. Recently, the authors
have presented an iterative approach used with the forward difference scheme for
semi-analytic sensitivities [9]. It should be pointed out that the similar idea has also
been described in Ref.2.

Compared with the forward difference approximation, central differencing pro-
duces one order higher accurate results. It has been used successfully for semi-analytic
sensitivities of a car model as described in Ref.3. However, the accuracy of results is
unknown and no error estimator is provided by the central difference approach.

This paper extends the iterative approach for semi-analytic sensitivities to the
central difference scheme. The modified central difference approach not only improves
the accuracy but also provides error estimators so as to ensure the quality of calculated
sensitivities. In this paper, the basic idea of the approach is first described. Then, a
general algorithm based on the approach is given. Finally, its effectiveness is shown
through numerical results.

2. MODIFIED CENTRAL DIFFERENCE APPROACH

2.1 Traditional Central Difference Approach



When the central difference approximation is used, the semi-analytic displacement
sensitivities are calculated by the equation:
AU AP AK
AS = as " asV M
where
AK  K(5+AS) - K(S - AS) 5
AS 2AS @)
where K, U and P are stiffness matrix, displacement vector and applied force vector of
the system of interest, S a design variable. These prefixed with A are their perturbed
terms corresponding to a small perturbation of the design variable AS.

Although Eqgs.(1) and (2) can be used to improve the accuracy of sensitivities,
results are not ensured because an ideal step size AS is difficult to estimate in advance.
Further more, no error measure is provided for estimating any sensitivity error.

Following sections will present a modified central difference approach which will
not only improve the accuracy of sensitivities but also provide error estimators.

2.2 Modified Central Difference Approach

For two small perturbations about a known solution, the matrix equations of equilib-
rium of system can be expressed as:

KU =P- (3)
KUt = p* (4)

An ‘exact result’ would be the difference of the two solutions, Ut — U™, which
requires expensive decomposition of K+ and K~ and should be avoided. Herein, we
will expand Eqs.(3) and (4) to obtain finite difference result as follows.

Using Taylor’s theorem, one can expand K~ as

K- = K(S-AS)
_ K ASQ-IS N AS? 9’°K B AS® PK + AS* 9K
B s 2 OS2 6 0S® 24 054
ASt 9K
4o (_1)’“___

k' 0S*k
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= K- AK’ + AK® (5)

where AK” is the sum of odd-numbered perturbed terms given by

K ASPPK AS(2-1) g2k-1K
AK = At s ae T Y momiasmy T F=L23 (6)
and AK* is the sum of even-numbered perturbed terms as
. ASTP’K  AS* 9K AS3H) HEHK
AK® = 5 352+ 21 3S4+.”+(2—/9')!—8—S(2’“—)+”" k=1,2,3,--- (1)

Similarly, K*, U, Ut, P~ and P* can be written as

K* =K + AK’° + AK® (8)
U™ =U- AU’ + AU" (9)
Ut = U+ AU’ + AU* (10)
P~ =P - AP° + AP® (11)
PT =P 4+ AP° + AP® (12)

where AU?, AU®, AP and AP* are obtained from Eqs.(6) and (7) by replacing K
with U and P, respectively. Substituting Eqs.(5) and (8 ~ 12) into Eqs.(3) and (4),
one gets

(K- AK’ + AK®)(U - AU° + AU¢) = P — AP° + AP® (13)
(K + AK® + AK®)(U + AU + AU®) = P + AP° + AP¢ (14)
Expanding these two equations, one can have
KAU’ + AK°U 4+ AK°AU° + AK°AU° = AP’ (15)
KAU*® + AK‘U + AK°AU’ + AK°*AU* = AP® (16)

Eqgs.(15) and (16) have two unknowns to be solved, AU° and AUE.

Through detailed derivations as shown in Appendix A, one obtains following re-
currence formulae for AU° and AU®

KAU] = ~AK°AU;_, - AK°AUS_, k=123, (17)
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KAU; = —AK°AU] - AK°AU;_, k=1,2,3,--- (18)
where, for the first step,
KAUj; = AP° - AK°U (19)

KAU; = AP* - AK°AUj - AK°U (20)
Thus, AUP® is iteratively obtained by

AU = AUS + AU® + AU - (21)

By subtracting Eq.(9) from Eq.(10), one obtains the exact finite displacement
perturbations

AU = Ut — U™ = 2AU° (22)

Thus, AU is actually obtained from the iterative solutions, AU and AU®, with-
out using Ut and U~ which would require decomposition of K+ and K~.

Comparing Eqgs.(1) and (2) and Eqs.(17 ~ 21), one can see that the difference
between the traditional and the modified central difference approaches is due to higher
iterative terms AU}, (k > 1). Those higher order terms provide valuable information
about improving and estimating the sensitivity accuracy.

3. Two Error Estimators for Semi-Analytic Sensitivities

Before error estimators are defined, the computing cost involved in calculating each
iterative term is discussed. Table 1 lists the total matrix operation counts for each
iterative term. Adding operations are not included. For example, evaluation of AU
in Eq.(19) requires one forward and backward substitution (FBS) and one matrix
multiplication (MPYAD). If the computing cost for AU is taken as the base line,
then evaluation of AU§ requires additional one FBS and two MPYAD operations.
Similarly, evaluation of AU requires additional two FBS and four MPYAD opera-
tions.

3.1 Error Estimator Based on AU¢

A relative error based on AUY is defined as

AU ||
6 = , k=12 (23)
FT AUy |
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where

AUY, = AU+ AU + - + AU? (24)

and || AUY ||= /AUTAUS, || AUY ||= /AU TAU?,. 1f 62 is less than a small

value €°, then, Eq.(24) could be taken as a sufficient approximation of AU®° given in
Eq.(21). Otherwise, one can proceed the iterative procedure.

3.2 Error Estimator Based on AU}

In many cases, only an initial term AU may be sufficient to approximate AU® in
Eq.(21). Thus, evaluation of term AU or the higher could be avoided. However, an
error estimator which can effectively measure the sufficiency of term AU} is desirable.
An relative error estimator for such a purpose is defined as

LAGG |

&8 =
PNV

(25)
where AU§ is obtained from Eq.(20).

Since AU§ contains more higher order information than AUY does, the error
estimator, 6§ provides valuable information about how well AU approximates AU®.
The advantage of using &g over 6 is to reduce the additional computing cost as much
as possible.

The error estimator &G together with 67 can be used to control quality of semi-
analytic sensitivities. After AU§ and AU§ are calculated, Eq.(25) is used to obtain
6. If 65 < €°, then AU is a good approximation of AU° and further iterations
can be skipped. Otherwise, Eq.(17) is solved for §%. If 62 > €°, it indicates that the
pre-selected step size is not adequate and more terms are required to obtain accurate
sensitivities. However, when the iterative process is divergent, a maximum number
of iterations should be specified so as to stop meaningless calculations.

4. GENERAL ALGORITHM

Based on the idea described above, a general algorithm for the proposed approach 1s
given below.

1. Form stiffness matrix K and force vector P and solve KU = P for U .



10.
11.

12.

. Build AK°U , AK*U , AP’ and AP*. Solve following equations for AU and

AU;.
KAUj = AP’ - AK°U
KAU; = AP° - AK’AU; - AK‘U

Set AU, « AUg and calculate 6. If §§ < £°, go to Step 11.

Set k « 1.

Build AK°AU};_, and AK°AU;_,. Solve the following equation for AUY.
KAU} = -AK°AU;_, — AK°AU;_,

Calculate 6. If 67 < £°, go to Step 11.

If k> ITERMAX, go to Step 12.

. Build AK°AU} and AK*AUj_,. Solve the following equation for AUS.

KAU; = —~AK°AU; — AK°AUS_,

Set k «— k + 1 and go to Step 5.
Calculate sensitivity AU?, /AS.

Stop.

5. PRELIMINARY RESULTS AND DISCUSSIONS

Figure 1 shows a simple cantilever beam under end moment with detailed specifica-
tions. From the basic beam theory, the deflection at the right end is given as:

ML?

Va =35

(26)



Taking the length of the beam L as a design variable, i.e., S = L, Then, the sensitivity

of the tip deflection is

OVa _OVa ML _
35 ~ oL Bl 27)

In order to investigate the effectiveness of the proposed approach, tip deflection
sensitivities are calculated using the proposed algorithm. Four different step sizes
are used in this example (AS = 107%,1073,107%,107%). Each step size is equally
distributed along the nodes on the beam model. For example, when AS = 1075,
each node is has 10™7 perturbation in its location for the beam model of NE = 100.
Numerical results are presented in Tables 2 through 5. Each table is generated using
one fixed step size.

Table 2 lists semi-analytic sensitivities with AS = 1072 for different numbers of
elements (NF = 1,10,25,50,100). It shows that results from the traditional central
difference scheme become less accurate when the number of elements is increased.
Without corrective terms, the relative sensitivity errors range from 0.08% to 750%.

When the modified central difference approach is utilized, the magnitude of rela-
tive errors is reduced to below 1.05%. The improved accuracy is achieved by including
more iterative terms in Eq.(21). These terms are included so that 87 < €° = 0.05 or
65 <€*=0.01. When NE =1, calculation of AUS and the higher is skipped owing
to 65 < e°.

Sensitivities shown in Tables 3 through 5 are obtained only from the first term
AUj§ in Eq.(21). The error estimator é; defined in Eq.(25) is calculated to ensure the
accuracy of these sensitivities. It is listed in the third column. It shows that for all
66 < 0.01, relative sensitivity errors are well below 7%. We know from Table 1 that
the additional cost for evaluating 8§ is one FBS and two MPYAD operations.

One may notice that in Table 5 for the case of NE = 100, even with
66 = 0.025 > ¢ = 0.01, the corresponding sensitivity error is very small. This is
probably caused by numerical round-off- errors.

The above results show that the modified central difference approach can produce
very good semi-analytic sensitivities (equivalent to those using the total finite differ-



ence approach) without decomposing K+ and K~. In particular, when the step size
is relatively small, the error estimator 6§ can be used to ensure the quality of the
calculated sensitivities with minimal computing cost.

Iven with a too large step size, the modified approach can use the error estimator
6, to guide the iterative process to improve the sensitivity accuracy. However, as
k increases, the additional computing cost also increases. As shown in Table 2, for
the case of NE = 100, the additional computing cost of 12 FBS and 24 MPYAD
operations is required. In practice, the iterative process can be stopped if 62, is still
larger than ¢° with a given number m. Then a modified step size provided a user or
by the program itself can be used to continue the calculation.

6. CONCLUSIONS

1. when the shape perturbation is properly chosen, the modified central difference
approach can produce as good semi-analytic sensitivities as those obtained using
the total finite difference approach.

2. Even with an initially inadequate step size, The proposed approach as well as
error estimators, 6 and 6§ provides a tool to ensure the quality of calculated
semi-analytic sensitivities.

3. The approach is simple and straightforward.
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APPENDIX A

Egs.(15) and (16) in the main text are rewritten here for convenience,
KAU’ + AK°U + AK°AU*° + AK*AU’ = AP® (A-1)
KAU* + AK‘U 4+ AK°AU° + AK*AU® = AP® (A-2)

Compared to AKAU, KAU?, AK°U and AP? are higher order terms of order one,
KAU*, AK°AU°, AK*U and AP*® are terms of order two, AK°AU*® and AK*AU"
of order three, and AK*AU*® of order four. If terms with order two or higher are

ignored, Eq.(A-2) vanishes. Then, the first approximation of AU°, AUY can be
obtained using previously decomposed K as follows.

KAU® =~ KAUj, = AP° - AK’U (A-13)

Substituting AU} into Eq. (A-2) and ignoring term AK°AU?®, one has the first
approximation of AU® AU as

KAU* ~ KAUj; = AP* - AK°AUj — AK*U (A—4)

‘Denote the errors of AUY and AU by AU? and AU*, one has true values of AU®
and AU*® as

AU° = AU + AU? (A—5)
AU® = AUY + AU® (A —6)

Substituting Eqs.(A-5) and (A-6) into Egs.(A-1) and (A-2), one has
KAU? + AK°AUj + AK°AUS + AK*AUY + AK*AUS =0 (A=T)
KAU® + AK°AU? + AK°AU: + AK°AUS =0 (A—8)

Again, ignoring relatively higher order terms in Eq. (A-T), AK°AU¢ and AK°AU?
one obtains an approximate vector AU of the AUY by

KAU? ~ KAU? = —~AK°AUS — AK°AU? (A-9)

Further, one can calculate the approximate values of Af]f by sgbstituting AUY into
Eq.(A-8) and neglecting a relatively higher order term, AK*AU®, as

KAU: ~ KAU¢ = ~AK°AU? — AK*AU? (A — 10)
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Here, expressing

AUS = AU + AU} (A—11)
AU¢ = AU® + AU, (A—12)

and following the similar procedure of obtaining AUY and AU¢, one can have ap-
proximate values AU} and AUY as follows

KAU; = —~AK°AU¢ — AK°AU” (A—13)

KAU; = ~AK°AUS — AK°AU® (A—14)

Thus, a general recurrence formula of AU is simply derived as:

KAU; = -AK’AU;_, - AK°AU;_,, k=1,2,3,--- (A—15)
KAU; = —-AK°AU} — AK°AU;_,, k=1,2,3,--- (A—16)
and
KAUj = AP’ — AK°U (A=17)
KAU; = AP° - AK°AUj — AK‘U : (A—18)
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Table 1 Total Operation Counts for iterative Terms

Term FBS count MPYAD count
AU3 1 1
AU 2 3
AU? 3 5
AUS 4 7
AUy 2Kk + 1 4K+ 1
AU 4k +3

2k +2
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Table 3 End Deflection Sensitivities with Different Numbers of Elements

( DELB = 1. E-3)

No. | Modified central difference

of

elem. Sensi. 2‘::2?(",2) 58 (%)
1 1.000025 0.0025 0.0375
10 1.000734 0.0734 0.0330
25 1.004475 0.4475 0.0327
50 1.017844 1.7844 0.0360
100 1.071486 7.1486 0.0425
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Table 4 End Deflection Sensitivities with Different Numbers of Elements

( DELB = 1. E-4)
No. Modified central difference
of
Relative e

elem. Sensi. error (%) 0% (%)
1 1.000166 0.0166 0.0035
10 1.000172 0.0172 _0.0212
25 1.000195 0.0195 0.0274
50 1.000300 0.0300 0.0302
100 1.001348 1.1348 0.2412
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Table 5 End Deflection Sensitivities with Different Numbers of Elements

( DELB = 1. E-5)
No. Modified central difference
of
elem. Sensi. I:fr'g:i(qu) 52 (%)
1 1.001358 0.1358 0.0004
10 1.001355 0.1355 0.2084
25 1.001627 0.1627 0.2508
50 1.003631 0.3631 0.3460
100 1.005467 0.5467 2.4975
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Fig. 1 A Cantilever Beam under End Moment

18



