JOINING TETRAHEDRA TO HEXAHEDRA

Donald L. Dewhirst
Peter M. Grinsell

Ford Research Laboratories
Materials Research Laboratory
CAE Department
23400 Michigan Ave
Dearborn, MI 48124

John R. Tucker

Technical Specialist, Applied Math & FEA
Modular Engine Engineering
EEE Building - MD 37
21500 Oakland Blvd.
Dearborn, MI 48121-2053

Alok Mahajan

Optimal CAE, Inc
Novi, MI 48375

ABSTRACT

In the context of creating finite element mesh from a solid modeler, for
example, ARIES/ConceptStation, the user can choose between techniques of
mapped meshing and free meshing. Mapped meshing provides greater choice of
elements and more control of mesh density. Mapped meshing ususally results in
the most computationally efficient mesh. Free meshing provides for the most
rapid production of mesh, sometimes with great sacrifice in computational
efficiency. The best of both worlds would exist, if the user could choose to
use mapped meshing in geometrically simple regions and free meshing in
geometrically complex regions. Because currently available free meshing
algorithms only provide tetrahedra, and because the most efficient (mapped)
mesh consists of hexahedra, a methodology is required for joining these two
non-conforming elements. This study examines a variety of methods for joining
these elements, considers a multiplicity of load conditions, and demonstrates
that joining with small error is possible.



INTRODUCTION

Generating finite element mesh for a three dimensional continuum is consider-
ably more difficult than for a two dimensional continuum. Free meshing, i.e.
automatic meshing free of topological constraint, is available in two dimen-
sions for both triangles and quadrilaterals. Free meshing is commonly
available in three dimensions only for tetrahedra and not for hexahedra.
(This situation is expected to improve in the next couple of years as a great
deal of work is going on in the National Labs and in Universities.)
[1,2,3,4,5,6}

For most stress and thermal problems, the four noded tetrahedron is a poor
performer. Ten noded tetrahedra, on the other hand, provide very accurate
stress and temperature results for a given edge length when compared to
hexahedra. Use of the ten-noded tetrahedron, however, gives rise to a larger
number of degrees of freedom than a comparable hex model.

For a relatively small problem, the analyst can usually afford to mesh the
entire structure with ten-noded tetrahedra and pay a bit more in CPU cost.

For a large problem, computer resources may be an important issue. The best
compromise occurs when the structure can be divided into sub-regions in such a
way as to segregate the geometrically complex regions. These can be meshed
with tetrahedra, while the remaining geometrically simple regions can be
meshed with hexahedra. See Fig 1. In this way, the size of the model remains
manageable and the time to mesh can be drastically reduced.

PROBLEM DEFINITION

Two issues need to be resolved before it is practical to wed mapped mesh to
free mesh (hexahedra to tetrahedra) in a three-dimensional continuum. The
first issue is that the corner nodes should match across the interface. Some
free mesh generators, for example, are incapable of matching the regular
spacing of a mapped mesh. The second issue is that the tetrahedra and
hexahedra are non-conforming at their interface, i.e. they are not C° continu-
ous. To illustrate this, consider two tetrahedra whose triangular faces join
the quadrilateral face of a hexahedron as illustrated in Fig 2. The center
point of the diagonal, point A, is coincident with the center of the quadri-
lateral face before deformation. Point A on the tetrahedra will displace only
as a function of points 1 and 3. The coincident point of the quadrilateral
face will displace as a function of all four bounding points. Therefore, the
deformed geometry will in general be discontinuocus at the element interface.

The first issue, that of matching corner nodes across the interface, will be a
function of the algorithm employed by the mesh generation software.
ARIES/ConceptStation, which uses an Octree algorithm, permits the seeding of
the volumetric free mesh by using either a mapped mesh or a free mesh on
bounding faces. Similarly, software that uses the Delaunay algorithm permits
seeding by either mapped or free meshing.

The second issue, that of compatibility (C° continuity), is the main subject
of this paper.
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ANALYSTS

Because MSC/NASTRAN permits the omission of any combination of edge nodes on a
higher order element, it is possible to join hexahedra to tetrahedra in a
great number of ways. For example, one possibility is to drop the mid-
diagonal node (node A of Fig 2) so as to join CTETRA(9)s to CHEXA(20)s. This
provides continuity at the corners and mid-edges. Another possibility is to
omit all three mid-edge nodes at the interface and join CTETRA(7)s to
CHEXA(8)s. We tested six combinations as follows:

CTETRA(4) to CHEXA(8)
CTETRA(9) to CHEXA(12)
CTETRA(9) to CHEXA(20)
CTETRA(10) to GHEXA(8)
CTETRA(10) to CHEXA(12)
CTETRA(10) to CHEXA(20)

The CTETRA(10)s, which of course retained their mid-diagonal nodes, had their
mid-diagonal nodes constrained to displace as a function of the four surround-
ing corner nodes by means of multi-point constraint functions (MPCs). This
has the effect of smoothing out the displacement field across the element
interface. The MPC prescribes the displacement of the mid-diagonal node as a
weighted sum of the displacements of the four surrounding corner nodes. The
weighting factors can be calculated from the solution of four non-linear
simultaneous equations derived from consideration of the element shape
functions and the weighting factor identity equation. A good discussion of
this is found in Reference [7], which suggests an iterative solution to the
non-linear equations. An exact solution for these equations is given in the
appendix to this paper. In our experience, the exact solution provides a more
robust and efficient procedure than the iterative scheme that we tried. As a
trivial example of the weighting functions, when the face of the CHEXA element
is rectangular, the weighting functions are 0.25 for each of the four nodes
bounding point A.

The six combinations listed above were tested for a bar, a prismatic structure
whose cross-section is an equilateral triangle. The bar is divided into two
halves at the midpoint of its length. One half of the geometry is filled with
'CTETRA elements and the other half with CHEXA elements. See Fig 3. Stresses
at the central plane where the tetrahedra join to the hexahedra are measures
of performance. Theoretical stresses at this interface are of course known.
The bar was subject to tension/compression, torsion, bending, free thermal
growth, and a large rigid body displacement, all separately applied. Those
five loads or displacements cover the range of conditions that could be
expected.

In addition to the six combinations of the list, three separate models
consisting solely of CHEXA(8), CTETRA(10), and CTETRA(4) were tested to
provide a basis for comparison to the heterogeneous models. Note that the
triangular cross-section produces elements that are somewhat distorted. We
consider the amount of distortion to be typical of that seen in real models.
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DISCUSSION

Table 1 summarizes the results of 50 tests on the various elements and loads
or displacements. Note that the TENSION test produces EXACT results for all
three of the homogeneous element sets. This confirms that those elements pass
the patch test. Note also that the THERMAL test and the RIGID BODY DISP. test
produce negligible error for all cases except those where MPCs are used. The
CTETRA(4) element produces very large errors in the TORSION and BENDING tests.
(These errors would be reduced for a finer mesh.) 1It's also interesting that
the CTETRA(10) outperforms the CHEXA(8) in torsion, while their roles are
reversed for bending.

Note that the von Mises stresses associated with the THERMAL case and the
RIGID BODY DISP. case are not negligible for the heterogeneous models. This
fact apparently arises due to the precision, or lack thereof, associated with
the MPC coefficients. The normal eight column format of the MSC/NASTRAN input
deck, after providing one column for the sign, one column for a leading
integer, and one column for the decimal point can leave as few as five digits.
This situation is alleviated by switching to the sixteen column format. The
results from that increase in precision are labeled (WIDE MPC) in the table.

The results reported for CHEXA(l2) and CHEXA(20) are not based on weighting
factors obtained for all eight surrounding nodes. That requires an extension
of the procedure given in the appendix. Presumably the use of all eight
surrounding nodes would provide somewhat lower error.

CONCLUSION

The results of Table 1 demonstrate that joining CHEXA(8) to CTETRA(10) can be
accomplished. For the benchmark problem, the error in stress is less than
0.5% for tension or bending and less than 7% for torsion. (The corresponding
stress error for torsion is 10% for an all-CHEXA(8) model). The recommended
technique is to use multipoint constraints (MPC's) for the mid-edge nodes of
the CTETRAs which lie in the plane of joining. The nodes between the corners
use weighting factors of 0.5 since they are halfway between the corners. The
node which corresponds to point A of Fig 2 uses four weighting factors as
suggested in the appendix.
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Table 1

Results of Benchmark Tests on
Triangular Prism. MSC/NASTRAN V66

RIGID
TENSION TORSION BENDING THERMAL 3%2*
Ovu (017"
TORQUE: STRESS:
EXACT 1O%QERR. 1.5% ERR. OF ORDER OF ORDER
10E-8 10E-6
1.5% ERR. 4.3 % ERR. OF ORDER OF ORDER
10E-8 10E-6
EXACT TORQUE: STRESS: Ovu O
256% ERR. | 56% ERR. OF ORDER OF ORDER
10E-9 10E-8
DISP.:
2.3% ERR. TORQUE: STRESS: Ovu Ovu
STRESS: 58.5%ERR. | 23.% ERR. OF ORDER OF ORDER
9.82% ERR. 10E-6 10E-8
DISP.:
4.6% TORQUE: STRESS: Ovu Ovu
STRESS: 1.5% ERR. 16.1% ERR. OF ORDER | OF ORDER
21 % 10E-6 10E-8
DISP:
+6.9% TORQUE: STRESS: o Cin
STRESS -1.2% +663%
33.7% OF ORDER OF ORDER
oS- 10E-8 10E-6
DISP. EXACT TORQUE: STRESS: Ovm O
(SJT‘??E;SE R 6.5% 0.43% ERR. 15 psi 2270 psi
Ovu Ovn
oAt TORQUE: | STRESS:
0.48% ERR 6.5% 0.43% ERR. 0.035 psi 5.26 psi
DiSP:
+3.% TORQUE: STRESS: Ovu Ow
: -1.% 14.7%
E?;Egosﬁ, ’ HaT 13 psi 2180 psi
D?‘:: TORQUE: STRESS: Ow O
+3.% -1.8% +12.8% .
STRESS: 13.3 psi 2149 psi
+25.6%
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Appendix
Isoparametric Interpolation of Quadrilaterals

Nomenclature:

X1,y] coordinates of point 1 of Fig 2,
Xp,y9 coordinates of point 2 of Fig 2,
X3,Yg3coordinates of point 3 of Fig 2,
%X4,,Y¥4 coordinates of point 4 of Fig 2.

x'(x) local x
y'(y) local y

A,B,C parameters whose values depend on nodal geometry

D(x,y),E(x,y),F(x,y) parameters whose values depend on nodal
geometry and on local x and local vy.

r(x,y) and s(x,y) are the natural (transformed) coordinates of x,y.

hi(r,s)...h4(x,s) are the weighting coefficients for the MPC.

u(r,s)...w(r,s) are the displacements of point at r,s as function of nodal
displacements.

Procedure:

For the point, which lies on the tetrahedron mid-edge and is to be
constrained, determine its local coordinates x'(x) and y'(y). Determine the
parameters A,B,C,D(x,y),E(x,y), and F(x,y). Evaluate r(x,y) and s(x,y).
Calculate hy(r,s),hy(r,s),h3(r,s)and hy(r,s). These are the coefficients for
the MPC card.

Equations:

: 1
x'(x) = X - Z ( X, + %, + Xy + X, )

1
y' @y = y-Z‘<y1+y2+y3+y4)
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