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Abstract

A finite element program such as MSC/NASTRAN provides displacements, rotations
or temperatures at grid points only. There are a variety of applications which require
results at other locations in the model:
1) Obtaining displacement boundary conditions on finer resolution
breakout models
2) Optical ray tracing on deformed mirror surfaces
3) Placing temperatures from a coarse thermal model on to a finer
structural model.

All of these applications involve interpolation of results over the finite element
model.This paper describes a general purpose post-processing program to accurately
interpolate over a model, using element shape functions. The user may specify a
choice of linear interpolation for thermal models and solid elasticity models, or cubic
interpolation for plate and shell models.



Introduction:

A finite element program such as MSC/NASTRAN [1] presents it's analysis
results at grid points. There are many cases where it is necessary to interpolate
results at intermediate geometric locations. A few example applications where
interpolation is required are given below.

a) Temperatures determined from a coarse heat transfer mode! are to be
applied to a detailed structural model for thermoelastic analysis, but the grid patterns
for the 2 models do not coincide.

b) Structural displacements from a system level model are to be applied
as boundary conditions on a detailed breakout model, but the breakout mode! has
more grids on it's boundary than the same region in the system model.

c) A ray tracing program which bounces many random rays off deformed
optical surfaces requires accurate displacement and slope information at ray-surface
intersection points which are in general not at grid points.

d) Post processing programs such as optical evaluation codes require
deformed surface data on a regularly spaced square pattern which typically do not line
up with the finite element grid points.

In each case, interpolation within a 3D solid or over a 2D surface is required. This
paper describes a post-processing program to provide this capability.

Linear Interpolation over a Solid:

When interpolating temperature results from a “coarse” heat transfer model to a
“detailed” structural model the following procedure works effectively.

Heat Transfer: Create and solve the coarse heat transfer mode! using
standard MSC/NASTRAN elements including: ROD, BAR, QUAD4, TRIA3, HEXA,
PENTA, TETRA. This analysis can be conducted in MSC/NASTRAN or in a code like
SINDA. For purposes of interpolation the thermal model must be represented as
standard low-order finite elements which have geometry. (Note that this NASTRAN
mode! could be created first and then the resulting MSC/NASTRAN conductivity,
capacitance, radiation, loads, and boundary conditions matrices- output and
reformatted as SINDA input).

Interpolation: Create the detailed structural mode! as desired. Pass each
structural grid through the search algorithm to find its interpolated temperature and
output a corresponding TEMP card for each subcase.



Thermoelastic: Include the interpolated TEMP cards as thermal loads in
the MSC/NASTRAN structural model.

A flow chart of the interpolation program is shown in Figure 1. Due to use of the
program on a variety of computer types which may be different from the computer on
which MSC/NASTRAN was run, all program inputs and outputs are in ASCII form.
This feature makes use of binary OUTPUT2 files unnecessary. Instead, output features
such as ECHO=PUNCH and THERMAL(PUNCH) are utilized to transfer data.

Since the interpolation is a geometric procedure, all grid locations must be
converted to a common coordinate system (step 2). This common system may be the
basic system or any other coordinate system in the model. Temperature results are
scalar requiring no coordinate transformation, but when interpolating displacement
results, the vectors must be converted to a common system also. At this point, it is
convenient to include the option to allow linear combinations of input vectors, or
scaling of inputs to other units.

In step 3 of the flow chanrt, all elements are converted to equivalent tetrahedrons
or cylinders. For example, a two dimensional QUAD4 is first made into a solid HEXA
by creating two surfaces parallel to the element but displaced a distance of 1/2 the
thickness in the positive and the negative surface normal directions. This HEXA is
subdivided into five TETRA elements as in the original NASTRAN HEXA1 element. In
a similar manner a TRIA3 is converted to a PENTA, then subdivided into TETRAs. All
one dimensional elements are arbitrarily converted into solid circular cylinders of
squivalent cross-sectional area.

Cylinders and tetrahedrons are used because their Jacobian transformation
matrix [J] is a constant throughout the element and not a function of spatial location as
in a general hexahedron. The transformations can be calculated once and then stored
for the search routine. In step 4, the element transformation matrices from spatial

coordinates {x} to parametric coordinates { £} are calculated for the resulting cylinders
and tetrahedrons. For element m,

[Jr] = [AX/CE ..]

The full matrices for the tetrahedron and cylinder are listed in the appendix. The origin
of element of element m in parametric coordinates {£, } can be found from the spatial
center {xg}

{Eo} = [l {Xo}

For every grid point {x}in the new (detailed) model (step 5), a search over all
elements in the old (coarse) model is conducted in steps 6-8. First, convert the grid
location to element m's parametric coordinates {€}

{Ep} = [Jml ™ {Xp}+ {Eo}

then test to see if contained within element m.
O-e<Eo<+1+¢



A user controlled tolerance e is placed on the search to find points on curved surfaces
which may fall slightly outside of straight edged elements representing the surface.

The search is conducted first with € =0 to find points totally within elements. Points
failing this first pass are searched again with a user specified tolerance. All TETRAs
are searched before the cylinders, because the tetrahedron representation is more
accurate than the cylinders.

When the proper element is found containing the grid point , the interpolation
takes place in Step 9 using the element’s shape functions (N) and the element’s nodal
results, such as temperatures (T).

Tixp) =2 Nj (&) * Tj

Example of Linear Interpolation over a Solid:

Two examples of linear interpolation are given for finding temperature inputs for
a thermoelastic analysis. In Figure 2a, a simple QUAD4 mdel with skewed elements
was used to analyze a linear gradient (Figure 2b) where the sides are insulated, the
bottom fixed, and a flux input to the top. The temperatures were interpolated on the
detailed 3D HEXA structural model (Figure 2c). The resulting temperature contours
are identical with the thermal model.

In the second example, a coarse 3D heat transfer mode! of a mirror and its
support ring (Figure 3a) were analyzed for a surface flux with temperature contours as
shown in Figure 3b. Temperature results are interpolated on to a detailed 3D
structural model of the mirror and its support ring (Figure 3c). The interpolated
temperatures are shown in Figure 3d showing the resulting contours are essentially
identical. This technique is much more accurate than the common alternative in which
the temperatures for the 3D structural model were obtained by a separate thermal
analysis where the closest grids were fixed to the thermal mode! results and
intermediate grids were found by an additional heat transfer analysis on the structural
model. In an optical element, small displacements are important to optical
performance , so accurate interpolation is required.

Cubic Interpolation over a General Surface:

In a ray trace program evaluating a deformed surface, the plate bending
behavior is required for accurate slope information at intermediate ray-surface
intersection points. The surface interpolation scheme is similar to Figure 1 with the
changes a noted below.

In step 1, a specific surface within the mode! representing the optical surface is
chosen with its corresponding coordinate system. This subset of grids can be
specified by giving a range of grid numbers or by giving a coordinate system number
for the coordinate position (CP) or the displacement coordinates (CD). The set of
elements (QUAD4/TRIA3) comprising the surface can be specified by a range of
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element numbers or by specifying a property number for the PSHELL. These are all
convenient techniques for defining a subset of the model.

As in the previous section, all grid points, displacements, and rotations must be
converted to a common coordinate system (step 2). This common system could be the
basic system or any other system in the model. If desired, this system may be present
for no other reason than for interpolation. Again, this is a convenient point to allow
linear combinations or scaling of input vectors.

The only element types supported in this interpolation are the low order plate
and shell elements (QUAD4 and TRIA3). Non-rectangular quadrilaterals are
convented to two triangles in step 3.

Rectangles and triangles are used because their Jacobian transformation
matrix [J] is a constant throughout the element and not a function of spacial location as
in a general quadrilateral.. The transformations can be calculated once and then
stored for the search routine. In step 4, the element transformation matrices from

spatial coordinates {x} to parametric coordinates { £ } are calculated for the resulting
rectangles and triangles. For element m,

W] = [dW/CE ...]

The origin of element of element m in parametric coordinates {&, } can be found from
the geometric center {x,}

{Eo} = Il {Xo}

For évery grid point {x,} in the new (detailed) model or ray point {x.}, a search
over all elements is conducted in steps 6-8. The point is converted to element n's
parametric coordinates {£,}

{Ep} =[Jml™ {xp}+ {8o}

then tested to see if contained within element m.
-1-e< €< +14¢

A user controlled tolerance ¢is placed on the search to find points on curved surfaces
which may fall slightly outside of straight edged elements representing the surface.

The search is conducted first with € =0 to find points totally within elements. Points
failing this first pass are searched again with a user specified tolerance.

When the proper element is found containing the point, the interpolation takes
place in step 9 using the element’s shape functions (N) and the element’s nodal!
results, such as displacements (U). In-plane motion is found from membrane
behavior

uxp) =X Nj(ﬁp) * Uj



The out-of-plane displacement w(x,) and slopes w, and w, are found from plate
bending behavior as given in Appendix B. The equations have the general form of

W(Xp) =% [fJW, + gij] + h‘ WYJ]
where W; ,W,;, and W,;are the nodal displacements and rotations.

Small displacement theory plate bending behavior provides slope data due to
surface normal displacements and rotations. For curved surfaces, a ray intersection
point may have a change of slope due to in-plane displacements. This rigid body
motion correction for a cylinder would be:

R,=R,-Dg/r

where: Dy = displacement in 6 direction on cylinder from u(x
R, = rotation about z axis as interpolated in step 9.
r = radius of the cylinder

p)

This feature is provided as a user selected option.

Examples of Cubic Interpolation over a Surface:

A simple test case with triangles, rectangles and multiple coordinate systems is
shown in Figure 4. This was given unit displacements and unit slopes at the central
nodes which result in the theoretical curves shown. The plate interpolation equations
in the appendix provided excellent correlation with theory.

The two mirror system shown in Figure 6 was used to test the ray-trace
algorithm which used interpolation over the shell surface. The incoming rays are
collected at the focal plane by very low angle of incidence rays grazing oft mirrors
which are nearly cylindrical. Actually the surfaces are slightly parabolic and
hyperbolic. The interpolation was verified by forcing a known functional displacement
over both mirror surfaces. The interpolated rays were then compared to the rays from
the perfect functional surface, again with excellent agreement.

In an experimental test configuration these mirrors are mounted at 12 points
about a belt line. In a horizontal test configuration in gravity, there are local bending
effects about the mount points which must be considered in the ray trace algorithm.
These highly local distortions require the local interpolation over a single element for
accuracy. Global functions must be of very high order to describe these-effects. The
interpolated ray trace agreed well with the experimental test.



Useful Program Features:

There are a variety of features which makes this program a good all purpose
tool. Some are listed below.

1) Coordinate system conversions for grid points:
Grids located in any coordinate system can be transformed to any other coordinate
system. The converted grids can be “punched” in new coordinate system with the
updated CP field. The displacement coordinate system field CD may be changed also
to match item 2 below.

2) rdi nversions for displacements:
Displacements may be transformed to any other system and “punched” for futher post-
processing or plotting. Disjoint superelement output is handled in the program.

3) L binat [ its:
Any linear combination of subcases may be interpolated or transformed and output for
further post-processing. This can be useful for scaling or changing units

4) Output formats:

A variety of output formats are available for interpolated, combined or transformed
results making them useful in other programs for analysis or display.

* TEMP cards for thermoelastic analysis

* SPC cards for breakout models in thermal analysis

* SPC cards for breakout models in structural analysis

* DISP punch format to simulate MSC/NASTRAN output

* EXT format for MSC/XL processing

* NOD format for PATRAN processing

* ARRAY format for optical processing

5) Summary tables:
All vectors for position and results are summarized for model checking:
* Number of grids and elements processed and used
* Number of coordinate systems and transformation matrix
* Max, Min, and Average values for grid location components
* Max, Min, and Average values for displacement components

6) Submodel specification:
Selection of surface elements and grids through simple criteria
* GRIDs by grid id range
* GRIDs by position coordinate system id (CP)
* GRIDs by output coordinate system id (CD)
* GRIDs by nonzero load from a pressure load (OLOAD)
* ELEMENTSs by element id range
* ELEMENTS by property id (PID)



Suggested improvements:

HEXAs and non-rectangular QUADs are converted to TETRAs and TRIAs for the
search algorithm and then the interpolation.  The efficiency of a constant [J] requires
this conversion for the search algorithm. There is no loss of accuracy in the geometry
because geometrically the QUAD is exactly equal to 2 TRIAs and the HEXA is exactly
equal to 5 TETRAs. Once the proper element has been found, the interpolation
algorithm however could use the shape functions for the original generally-shaped
QUADs and HEXAs without a great loss of efficiency. Also, the shear deflection term
could be included in the analysis.

Conclusions:
A post-processing program for 2D and 3D interpolation is a valuable tool for
many applications. This tool is an accurate method for thermoelastic analysis and

optical ray tracing. Many other applications, as noted in the introduction, can benefit
from this capability.
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Figure 1: Interpolation Flow Chart
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b) Heat Transfer Temperature Results
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Figure 3: Interpolation on Mirror and Mount
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A T 2D Interpolation Test Case
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Figure 4: Plate Bending Interpolation Test Case
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Figure 5: Optical Post-Processing Array
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APPENDIX
Triangular Plate Bending Behavior:

The equations used for friangular plate behavior are given in Yang [2] in
Section 12.4.4 using area coordinates §;

WL Ep ) = 2 [HW, + gWyj+ by Wy, + efwy- Wt ]

where the nodal displacement and slopes are W, W,;, W,; and coefficients are given
by:

f1 = 5.»1 + §1ZE.;2 + §12§3 - §1§22 - E.'1§32
g= (X2 - X1) (§12§2 + 0.5 §1§2§3) + (X3 " X1) (§12§3 + 0.5 &@2&3)

h1 = (YQ - Y1) (&-12&2 + 05 élgzgg,) + (YS - Y1) (&1253 + 05 §1§2&3)

Permute subscripts to obtain f,, f3, etc. The last coefficient is:

ej = (BA/ L1 2) (&1252&3) / (&3 + é]) / (&3 + gz)
where L4, = length of side 1-2
A = area of the triangle

The subscript n refers to slope normal to an edge. wy; is the average of the two nodal

-~

normal slopes on edge j. W, is found from differentiating the following function and
evaluating it at the midside of edge j.

W(E,Ep.Ey) = Z [HW, + gWy;+ by W]

These equations represent a 9 degree-of-freedom conforming triangle.

Rectangular Plate Bending Behavior:

The equations used for rectangular plate behavior are given in Yang [2] in

Section 12.3.3 where &1 are standard isoparametric coordinates. These equations
represent a 4 node 16 degree-of-freedom conforming rectangle.
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w(EN) =2 [G(E) Gin) W; + (a/2) Hi(E) Gjfn) Wy,
+ (0/2) Gy(E) Hy(n) Wy; + (ab/4) H,(E) Hi(n) Wy, ]
where
Gi() = (&E3 + 35 +2) /4
H(8) = €3 + &2 -5- &)/ 4
The nodal displacement and slopes are W;. W,;,W,;and

a = length in the x direction
b = length in the y direction

Tetrahedron Equations:

The tetrahedron is the primary element for linear interpolation in a general solid.
The 4 nodal coordinates can be represented in geometric or parametric space as:

Geometric Parametric
Node X Y 2z § n 4
1 x1 yi z1 0 0 0
2 x2 y2 z2 1 0 0
3 x3 y3 z3 0 1 0
4 x4 y4 z4 0 0 1
The shape functions are

Ny=1-8-n-¢

No=§

N3=n

Ng=C

The Jacobian matrix is
(x2-x1) (x3-x1) (x4-x1)

Wl =1 (y2-y1) (y3-y1) (y4-y1)
(z2-21) (23-21) (z4-z1)
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When testing to see if a point x, is located within element m, convert x, to element n's
parametric coordinates, then the point must pass the following 4 tests to be contained
within m

0<&<1

OD<n<i

0<{<1

0<&m+L <1

Cylinder Equations:

The cylinder is used for all 1D elements for linear interpolation in a general
solid. The 2 nodal coordinates can be represented geometric or parametric space as:

Geometric Parametric
Node X Y 2z 14 n e
1 x1 yi 21 0 0 0
2 x2 y2 z2 1 0 0
The shape functions are
N1 = 1 '§
No=§
The radius of the cylinder is
R = sqri(A/r)

The transformation matrix is

Ix mx nx
Wl=|ly my ny
¥4 mz nz

where the direction cosines of the vector along the member are
Ix =x2 - x1 ly =y2-y1 lz=22- 21

and the other vectors of length R are normal to the member using the v vector:

m=R*(IxV) i =R*(Ixm)

When testing to see if a point xp is located within element m, convert x to element m'’s
parametric coordinates, then the point must pass the following 2 tests to be contained
within m

0<&<1

0<sqnm?+{%) <1
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