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ABSTRACT

This paper presents an improved approach for linear buckling and geometric nonlin-
ear analysis in MSC/NASTRAN. The differential stiffness and the internal forces of the
QUAD4 and TRIA3 shell elements have been corrected in MSC/NASTRAN Version 68.
The linear stiffness of the shell elements has not been changed. With the corrections
in Version 68, two major capabilities have been improved. The eigenproblem in linear
buckling analysis ol thin shells is free of spurious modes which have been observed in
Version 67.5 and earlier Versions. Furthermore, the shell elements converge better in
geometric nonlinear analysis. The theoretical concept of the corotational formulation in
MSC/NASTRAN is summarized briefly. The corrections of the internal forces and tangent
stiffness are explained. Examples are presented which illustrate the improved behavior of
the shell elements in Version 68 as compared to Version 67.5.



Introduction

For some problems, the geometric nonlinear capability has not performed satisfactory in
MSC/NASTRAN Version 67.5 and earlier. In 1991, Dr.MacNeal reviewed the theory for
geometric nonlinear analysis, see [1]. It was found that the internal forces were inconsistent
with the principle of virtual work in case of large displacements and large rotations.
Improved formulas based on revised internal forces werc derived for elastic and differential
stiffness. The theoretical results in [1] have been confirmed by numerical experiments.
Accordingly, it has been decided to improve the geometric nonlinear capability of the

QUAD4 and TRIAS shell elements in Version 68 of MSC/NASTRAN.

MSC/NASTRAN uses the so called corotational formulation in gcometric nonlinear ana-
lysis. The average rigid body motion of a finite element is condensed out of the total
deformations and only the remaining net deformations (distortions) are considered in the
strain energy of the element. If we assume that the element distortions remain small, a
linear strain measure in the element is sufficient even for large overall deformations.

The main difficulty in the corotational formulation is the linearization of the virtual work
terms in closed form. Nour-Omid and Rankin developed a generic method to linearize
clements with a corotational formulation, see [2] and [3]. We found that the formulas
of the internal force and tangent stiffness derived by Dr.MacNeal in [1] correspond to
the formulas in [2] and [3]. In [1], [2], and [3], the term with the internal virtual work is
linearized in its discrete form using virtual deformations and internal forces of the element
grid points, respectively. Crisfield shows, in his textbook [4], that the linearization of the

discrete form is equivalent to the linearization of the continuum form of the virtual work
equation.

The approach taken in this paper does not change the linear behavior of the shell elements.
The corrections of the internal forces, the correction of the linear stiffness and the new
calculation of the differential stiffness are implemented as postprocessors to the existing
element processors, see [5] for details.

In the following chapters, we summarize the corotational concept which has been used
in all MSC/NASTRAN nonlinear elements except in the new hyperelastic elements of
Version 67.5 and 68. The correction of the internal forces and the linear stifflness and
the calculation of the differential stiffness are explained. Examples are presented which
illustrate the improvements in linear buckling and geometric nonlinear analysis.



The Corotational Concept in MSC/NASTRAN

In the corotational concept of MSC/NASTRAN, the average rigid body motion of an
element is condensed out of the total deformation. The displacement of the element origin,
usually an element grid point, is considered to be the average rigid body translation of the
element, sec Figure 1. The rotation of the element base vectors from the undeformed to
the deformed position is considered to be the average rigid body rotation of the element.
The rigid body rotation of the element in components of the basic system (b) is
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where Ty, and T}y are transformation matrices from the basic system to the undeformed
and deformed element system, respectively. The vectors e;, and d; are the orthogonal
unit base vectors of the undeformed and deformed element triads, respectively. The rigid
body rotation angles wp are calculated from the rotation matrix

RD — espinwD (3)
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The element net displacements of grid point I in (b) components are

) = %[0 - Rp X0 (5)
or in (d) components
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with
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X7 is the undeformed position of grid point I with respect to the origin of the basic
system, X2(®) is the undeformed position of grid point I with respect to the origin of the
undeformed element system. Bolded upper case letters refer to the undeformed confign-
ration, bolded lower case letter refer to the deformed configuration. Superscript 0 denotes
the element origin, superscript (b), (e), and (d) denote components in the basic, unde-
formed element, and deformed element, system, respectively. Note that eqn(6) is written
in mixed components.

The rotation matrix of the element net rotations of grid I'in (d) components is

=(d) )T 13 (8) mi(b
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where R(Ib) is the rotation matrix of the overall rotations w([b) in the basic system, and
ﬁgd) is the roation matrix of the element net rotation ng) in the deformed element system.

The net displacements ﬁ(ld) and the net rotations w(;” are now free of rigid body transla-
tions (x° — X°) and free of rigid body rotations wp.

Correction of the Internal Forces

The virtual work of the internal forces f; has to be invariant for rigid body motion. If we
have internal forces f; which do not satisfy invariance, we enforce the following equivalence
in the virtual work

od, £; = 6dTf;;  I=1,.N (10)
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Starting with eqn (10), all quantities in this paper are in the deformed element sytem
(d) if not indicated otherwise. N denotes the number of grid points in the element,
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u; = x! — X! are the element displacements without rigid body translation, wj are the
overall rotations, n; are the normal and shear forces, m; are the moments. Repeated
indices in upper case letters indicate sum over the grid points from 1 to N. In (10), we
assume that the forces f; are already invariant for rigid body translation. From(10), we
get the corrected forces

with
. oty ! ous
adr | duy | dw;
Py = od, 193; ’ Q_Zb‘_fl [6, 6] (14)
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The matrix Pzy is called a projection matrix according to [2] and [3] because it projects
out the rigid body mode components. The corrected internal forces fy satisfy equilibrium
in the deformed element.

The corrected element forces are transformed from the deformed element system (d) to
the basic system (b) and then assembled in a sum over the elements.

b d)T §(d)
f}b) = Dl()d) P“T fK (15)
with "
T’ 0
(b) bd
Dbd 0 T((}[;) (16)

Correction of the Tangent Stiffness
The variation of the internal forces f}b) with respect to the deformations d(Jb) it
5t = Dy PO 6 + Dy sPYTTY 4 Dy PG D (17)

K

The tangent stiffness is defined to be

ot
1= d’g,) 6, 6] (18)



In MSC/NASTRAN, the tangent stiffness is calculated by adding the lincar or nonlinear
material stiffness K¥; to the differential stiffness K2,

d
kY = DY (KE + K5) D" (19

The linear or nonlinear material stiffness K%, contains the terms due to the variation
of the stresses. The differential stiffness contains the terms due to the variation of the

strains, it is often called the geometric stiffness. The linear stiffness or nonlinear material
stiffness is

Ki; = P KkpPrs (20)
with _
Kt = 5 (21)
The differential stiffness is
K? = -I'FY — ¥ 1% + ol FrI? (22)

where Fy is the matrix of the internal forces

P, - { spin(n) ] 6,3 (23)

sspin(m,

and I'; contains the derivatives of the element rigid body rotation wp with respect to
the deformations d,
8wu

ry = |-G 16,9] D

é)wJ

and Wi is the matrix of rigid body rotations

_ — spin x¥
w0

The tangent stiffness is valid for large overall deformations and small element distortions.
The formula for the tangent stiffness (18) has been verified with a numerical experiment.
Let us assume that the internal forces f; are correct. Then we may generate an accurate
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tangent stiffness from numerical differentiation of the internal forces. From the central
difference formula it follows,

. — Of L1 Jdi+Ad) — fi(d; - Ady)
P ad; T3 Ad;

j=1,.6%N (26)

The numerical experiment was performed in MSC/NASTRAN with a DMAP alter, see
MSC/NASTRAN User’s Manual [6].

It has been [ound that the improved tangent stiffness K;; (19) in Version 68 matches
the numerically generated tangent stiffness with sufficient accuracy. To the contrary, the
tangent stiffness in Version 67.5 and earlier does not compare well to the numerically
generated tangent.

Examples

Linear Buckling Analysis of a Cylinder.
The lowest buckling load of a cylinder is calculated with MSC/NASTRAN Version 67.5

and Version 68. The numerical solutions are compared with an exact solution from Fliigge
[7]. The geometry and material data of the cylinder are summarized in Figure 2. The
cylinder is discretized with QUAD4 elements. For convenience, we use Sol 77, linear buck-
ling with cyclic symmetry. The buckling load is calculated for different wall thicknesses.
The results are summarized in Table 1 and Figure 3.

In Version 67.5, spurious modes occur as the wall of the cylinder becomes thin. With the
improved differential stiffness in Version 68, the buckling analysis is free of spurious modes.
The eigenvalues of Version 68 indicate a slight stiffening effect compared to Version 67.5.

Linear Buckling Analysis of a Cantilever.

The stiffening effect is illustrated with a cantilever beam, see Figure 4. The cantilever
is modeled with QUAD4 elements. The lowest Euler buckling load is calculated for
subsequent mesh refinements, the error compared to the exact solution is summarized
in Figure 5. In Version 67.5, the differential stiffness produces very accurate results for
coarse meshes. Using only one QUAD4 element, the error in the buckling load is 1.5 %
in Version 67.5 whereas the improved differential stiffness in Version 68 overestimates the
buckling load by more than 20 %.



In engineering analysis, reliable behavior of the elements for fine meshes is considered
to be more important than accurate answers for coarse meshes. Therefore, it has been
decided to make the new differential stiffness the default in Version 68. The user may still
activate the old differential stiffness of Version 67.5 and earlier by overwriting the default
with a system cell.

Linear Buckling Analysis in Version 67.5 and Earlier.

In Version 67.5 and earlicr, an approximation of the new differential stiffness can be
constructed with the following procedure. Every element has to be replaced by two
‘overlapping elements. One element has only membrane properties, MID2 and MID3 are
blank on the PSIIELL bulk data entry. The other element has only bending properties,
MID1 is blank on the PSHELL bulk data entry. This procedure is recommended for linear
buckling of thin shells using Version 67.5 and earlier.

Geometric Nonlinear Analysis of a Thin Plate

The bending of a thin plate is analyzed, see Figure 6 for geometry and material data. We
use MSC/NASTRAN’s nonlinear solution sequence with geometric nonlinear capability,
Sol 106 with PARAM,LGDISP,1 in the bulk data. The example has been used to tune the
penalty stiffness of the 6th degree of freedom for plates, see [8]. The plate is loaded with
a single force. The initial lateral stiffness of the plate is very small. The system becomes
stiffer when the lateral displacements increase, see Figure 7. We solve the problem with
two different iteration methods. In the first analysis, we usc the default iteration method
AUTO on the NLPARM bulk data entry. With the improved differential stiffness in
Version 68, the number of iterations is reduced by more than half compared to Version
67.5, scc Table 2. In the second analysis, we use the full Newton method (ITER,1). In
Version 68, the algorithm converges within 3 to 4 iterations per load step after the first
load step. In Version 67.5, the algorithm does not converge in the first load step. If the
calculation is continued, Version 67.5 diverges at 22.3 % of the final load. The example
illustrates how convergence in Version 68 improves [or geometric nonlinear analysis as
compared to Version 67.5.

In the nonlinear solution sequences of MSC/NASTRAN, Gimbal angle or rotation vector
definition may be used for the rotational degrees of freedom. The new approach for
geometric nonlinear analysis in Version 68 works for both types of rotations.



Conclusions

MSC/NASTRAN’s linear buckling and geometric nonlinear capability for shell elements
has been improved in Version 68. The internal forces and the tangent stiffness of the
QUAD4 and TRIA3 shell elements are corrected without changing the behavior of the
elements for small deformations. The old differential stiffness formulation of Version 67.5
and earlier may be activated in Version 68 by overwriting the default in a system cell.

The shell elements in Version 68 are improved in two areas as compared to Version 67.5
and earlier. In linear buckling, the shell elements arc free of spurious modes for thin
shells. In geometric nonlinear analysis, the shell elements converge better. Furthermore,
the internal forces in Version 68 are in equilibrium in the deformed configuration.
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undeformed element

deformed element

Figure 1. Element net deformations in MSC/NASTRAN

11



Geometry ' P
Length L = 20

a0

Radius R = 10 T
Thicknesses t = 1.0,0.3,0.1,0.03 ] SPc iz
Material : ]
Young’s Modulus E = 1.0E+7 L Al T
Poisson’s Ratio v = 03 ! ]

} -
Load ‘ :
Axial load P [ﬁ—fﬁ] E

-

FE Model
Cyclic Symmetry Sol 77, axisymmetric
72 segments, A8 = 5.0 [degr.]

20 QUAD4 elements, AL =1.0

Figure 2. Cylinder under axial load.

thickness buckling loads
t Pesactlomss] | Poum/Pesact | Prum/Pesact
see Fligge 7] | Version 67.5 Version 68
1.00 | 186,186.0 H=2 1.0062 1.0067
0.30 | 21,206.4 H=3 1.0528 1.0533
0.10 2,740.8 H=4 spur 1.0191
0.03 251.7T H=5 spur 1.0313

H=5 indicates that the lowest buckling load is in harmonic 5.

spur indicates spurious modes.

Table 1. Lowest linear buckling load of a cylinder for various shell thicknesses.
72 segments, 20 QUAD4 elements per segment.
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1.035 '} Spurious = Spurious m Spurious
A
1.03 4
1.025 A
el
a L] Version 67.5
: 102 + —4&—— Version 68
~
§ 1015 1
d
Ry
1.01 +
1.005 +
1 t + t + t —
1.000 0.500 0.250 0125 AL
5.000 2.500 1.250 0.625 A9

Mesh Refinements

Mesh Refinements

no.of elements

no.of segments
AL
Af [degr.]

20
72
1.000
5.000

40
144
0.500
2.500

80
288
0.250
1.250

160
376
0.125

0.625

Figure 3. Accuracy in lowest linear buckling load of the cylinder.
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Geometry | ‘l

N\ L
Length L = 12.0 ‘f \ \ /
Width b = 1.0 v o\
Thickness . t = 0.15 \ |
\

Material : \\
Young’s Modulus E = 2.0E+7 L \ -
Poisson’s Ratio v = 0.0 i e

! ~
Exact solution -
Lowest Buckling Load P.; = 96.38286 ’L

<

FE Model BN

L, 2, 4,8, 16, 32 QUAD4 elements,

Figure 4. Euler buckling of a cantilever.

1.25 +

——®&—— Version 67.5

—4&— Version 68

1.10 +

Pnum / P exact

105 +

- e . Y
LANL B I M SRR S untt N N I R et e R RE Bt Henme nuas s Bins o S

16 32
Mesh Refinements - No. of Elements

1.00

Figure 5. Error in lowest buckling load of the cantilever.
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Geometry Material

Square plate L = 400 mm Young’s Modulus
Thicknesses t = 0.4 mm Poisson’s Ratio
Load

Concentrated load at grid 19 in negative z-dir.

FE Model

4x4 QUAD4 elements 1. Subcase
4 load increments
2. Subcase

5 load increments

E

2.07E + 5 [N/mm?|
0.3

13,200.0 [N]

2,200.0 [N]

13,200.0 [N]

X Deflections for P = 13,200
Subcase 2 Load Step 5

Scale Factor 2.0

Figure 6. Geometric nonlinear bending of a thin plate.
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"; 8000 ——8-—— Version 6§7.5 s
5
- 6000 2
o 7
L -] 4
§ 4000 ;
///
2000 ‘/T/,"’
0 i .
0 2 4 6 8 10 12 14 16 18 20

Displacement at Grid 19 - uz [mm]

Figure 7. Load versus displacement at grid 19.

Iteration method AUTO (default)

displacement at grid 19

Version 67.5 Version 68
no.of bisections 5 5
no.of iterations 185 90
no.of stiffness updates 14 14

-1.859432E4-01

-1.826097E4-01

Tteration meth

od ITER, 1 (full Newton)

Version 67.5

Version 68

diverges at
22.3 % of end load

Kokokok

displacement at grid 19

converges

-1.826100E+01

Table 2. Number of iterations for bending of a thin plate.
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