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Abstract

The most common form of structural Finite Element Analysis (FEA) is
the linear static solution, in which the behavior of each element
can be characterized as a linear equation. Linear gstatic FEA cannot
be used for problems with nonlinear gap-type elements, as their
load vs. deflection behavior cannot be expressed with a single
linear equation. Examples of gap-type elements include a cable (an
axial element which can transfer tension between its ends, but not
compression) and a bearing contact (two interfering surfaces that
can compress against each other, but do not adhere when separated).
For a gap element, the load vs. deflection equation depends on the
sense and magnitude of deflection each loading condition imposes on
the element.

Many common FEA codes do not support gap elements; for those that
do, adding a gap element complicates the solution by requiring
extensive changes to the linear model, and by increasing the CPU
time required (often several times over) As the gap behavior can
vary from one loading condition to the next, a separate solution
for each condition must be obtained.

The Enforced Strain Method uses an approach in which a compensating
enforced strain is used to give linear elements gap-like load vs.
deflection behavior. The technique can be used with linear FEA
codes that do not support gap elements, or can be used as an
alternate solution for gap-capable codes. Benefits of the method
are reduced CPU requirements, the ability to run multiple loading
cases, and no need for superelements,

The Enforced Strain Method is a more efficient gap solution,
particularly when a given model has a relatively small proportion
of gaps, and when multiple loading conditions are required. an
example problem is presented in which the required CPU time was
reduced by 43% as compared to the fastest MSC/NASTRAN gap solution.
Though presented as a program external to MSC/NASTRAN, the method
could be implemented through DMAP alters to the standard linear
static solution. Run as a DMAP, CPU time savings for the example
problem would have increased from 43 to 66% as compared to
MSC/NASTRAN's nonlinear gap Solution 66.
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Introduction

Linear static analysis represents the simplest form of structural
Finite Element Analysis (FEA) in that each element's behavior is
represented by a single linear equation; benefits include the
ability to solve many loading conditions simultaneously for
relatively little CPU time. Gap-type nonlinear elements are more
complex in that their behavior depends on the loading condition;
nonlinear solutions require more CPU time, and that each condition
be solved seperately. The Enforced Strain Method is a technique
that uses linear static analysis to solve many nonlinear load
conditions more efficiently than nonlinear analysis.

A linear finite element is one whose stiffness (the slope of the
element's load vs. deflection curve) is constant regardless of the
magnitude and algebraic sense of its deflection. An example is a
non-buckling column, whose load vs. deflection curve is a single
continuous line (see Figure 1A). Linear problems can be written as
a series of simultaneous equations, which can then be solved
directly using matrix methods. FEA codes using the force/
isplacement method solve the basic equation

{d} = [k1' {P} (eq. 1)
where {d} = vector of grid point deflections,
(k]! = inverse of the grid point stiffness matrix ki,
{P} = vector of forces and moments acting on each grid
point due to the external loads for the given loading

condition;

It should be pointed out that inverting the stiffness matrix, [k],
is computationally the most "expensive" part of the problem; once
inverted, additional loading conditions can be analyzed for little
added expense using the same inverted stiffness matrix [k]' and a
new load vector {P}.

Gaps are elements whose load vs. deflection curve is not a single
continuous line; frequently, their behavior can be idealized using
two or more linear segments. A cable has nonzero stiffness as its
ends move apart, but no stiffness (carries no compressive load) if
its two ends move closer together than its initial. length. A
contact gap represents interfering surfaces (a pin in a socket,
pressing against one side of the hole) and has only compressive
stiffness. A mechanical stop (a pin in a slot) has zero stiffness
until a minimum deflection takes place. The load vs. deflection
curves for these examples are shown in Figures 1B - 1D.



MSC/NASTRAN's Solution 66 solves gap-type problems by iteratively
changing the stiffness matrix [k] as the Finite Element model (FEM)
deflects under load. Changing the stiffness of even one element
requires reinversion of the modified stiffness matrix. With several
iterations required per loading condition, gap-type solutions can
become prohibitively expensive; additional loading conditions
compound the expense.

FEA codes that support superelements improve iterative performance
by partitioning the stiffness matrix into several units; the
analyst separates the stiffness matrix into a small and a large
component where all grids associated with nonlinear elements are
isolated into the smaller "residual" matrix. Oonly the residual
matrix must then be reassembled and reinverted when the stiffness
of gap elements change. Superelements speed nonlinear solutions at
the price of adding complexity to modeling.

Enforced Strain Method

The Enforced Strain method differs from this approach in that the
gap element's stiffness is not changed to obtain the desired load
vs. deflection behavior; rather, a "compensating" enforced strain
is added to the applied load vector {P} that allows, for instance,
a cable to shorten without picking up the compressive load a linear
element would have. Conceptually, this is as though the cable had
been cooled to a temperature such that its thermal contraction was
exactly equal to the contraction of the element for that loading
condition. The technique can be broken down into 5 steps:

1) Model the gaps using equivalent linear elements
(i.e, 1-D axial CRODs with the appropriate non-zero
stiffness in place of CGAPs);

2) Obtain a linear solution of resulting gap ROD loads
for all required loading conditions;

3) Determine the mathematical relation between an
enforced strain in each gap ROD and the resulting axial
load in all others;

4) For each load condition, solve for a set of enforced
strains that "cancel out" gap ROD axial loads that are
inconsistant with the desired nonlinear gap behavior;

5) Add the enforced strains to the linear model and
obtain a new linear solution (gap ROD axial loads should
now agree with the results from nonlinear gap solutions).

Adding enforced strains to the linear solution alters equation 1 to

{d} = (k]T ( {P} + [K] {e} ) (eq. 2)



where {d} = vector of grid point deflections,
(k]! = inverse of the matrix of grid point stiffnesses,

{P} = vector of forces and moments for the given loading
condition;

{e} = vector of gap compensating strains,

(K] = matrix of gap element stiffnesses.

An enforced strain on one gap ROD changes the axial load in all
others; the relation between strain and load can be expressed as

{p} = [C] {e} (eq. 3)

where {p} = vector of gap ROD axial 1loads,

{C] "coefficient of influence" matrix defining the
effect of a strain in one gap on the load in the

others,
{e} = vector of gap ROD enforced strains.

The matrix [C] is related to the stiffness matrices (k] and [K],
and allows one to calculate an "equal and opposite" axial load to
cancel inappropriate behavior of the linear gap RODs. How it is
obtained will be discussed later.

Having solved for the linear gap RODs' axial loads for the required
loading conditions and determined the [C] matrix for the linear
model, the compensating strains must now be calculated. For a given
loading condition, all gap elements that have a proper stiffness
(i.e., cables in tension) are removed from [C]. The remaining
partitioned matrix is inverted and multiplied by the loads in the
inconsistent gap elements, or,

{g,} = [C,]" {p,} (eq. 4)
where {e,} = enforced strains on inconsistant gap RODs for a
given loading condition,

{C,]! = inverse of the coefficient of influence matrix
P 1] . ] .
with all consistent gaps partitioned out,

{p,} = 1inconsistent gap loads from the linear solution;



The resulting vector {e,} is a set of enforced strains that, when
combined with the condition's linear solution, results in zero load
in the formerly inconsistent gap RODs, and alters the load in the
remaining RODs. The compensated gap loads can be predicted using

{p'} = [C] {e} + {p} (eq. 5)

where {p'} gap loads with compensation,

I

(€]

full (unpartitioned) coefficient of influence

nmatrix,

{e} = enforced strain vector that includes compensating
strains {e,} for the inconsistent gap RODs, and
zeroes for the consistant gap RODs,

{p} = uncompensated gap loads from the linear solution;

It is necessary to check the compensated gap load vector, {p'}, for
newly inconsistant gaps. If any are found, [C] is repartitioned and
the process is repeated until a fully consistant solution is found.
Each additional loading condition requires a new enforced strain
solution.

One key step in the enforced strain method is determining the
relation between enforced strains and gap ROD axial 1loads as
defined by equation 3. The coefficient of influence matrix [C] can
be obtained by matrix operations on the stiffness matrix [k]. This
method (as presented) is external to MSC/NASTRAN and cannot readily
access [k], so an alternate method is used: for each gap element,
a subcase with a unit enforced strain on only that gap's ROD is
solved using the linear static solution. The resulting loads then
define a "column" of the [C] matrix; solving all the unit strain
subcases supplies the remaining columns of the matrix [C].

While this technique also iterates and inverts a matrix, it is more
efficient than the stiffness iteration technique in that it deals
with the much smaller coefficient of influence matrix [C]. In a
typical model, each grid represents six degrees of freedom
(translations and rotations in three directions). A 1000 grid model
would have a stiffness matrix of 6000 degrees of freedom. If the
model had 100 gaps in it, the [C] matrix would have 100. degrees of
freedom (one per gap). Assuming half the gaps are inconsistent for
a given condition, the enforced strain method iterates on a 50
degree of freedom coefficient matrix, rather than a 6000 degree of
freedom stiffness matrix.



Using superelements for the model cited above, the residual
stiffness matrix would have 200 grids (two per gap), or 1200
degrees of freedom. Reducing the matrix size by a factor of 5
results in a much quicker solution (CPU times are approximately
proportional to the square of the matrix size). It should be noted
that this residual matrix is 24 times as large as the partitioned
coefficient matrix [C,]; even with superelements, inverting the
residual matrix once would require about 600 times as much CPU time
as inverting the matrix (C.1-

Analysis

Figure 2 shows a folding joint, in which the lugs of an inner and
outer beam are connected by a hollow pin, about which the two beans
may rotate. The structure is nonlinear in that the pln transfers
load into the beam lugs by bearing against the holes' inner edges;
reversing the direction of applied load means load transfer occurs
on the other side of the hole. A nonlinear solution is required to
obtain stresses in the lug region.

Figure 3 shows a FEM of the inner bean's lug The beam itself is
considered ground. The lower end of the pin is a plane of symmetry.
Load is introduced into the pin at its upper end, through 36
contact gaps representing the outer beam's lug (see Figure 1- C). 36
radial contact gaps connect the pln s circumference to the inner
beam's lug inner diameter. The pln is modeled with bending plate
elements and the lug is modeled using planar membrane elements.

The design load for the lug is 250,000 1lb. That load can be applied
in any direction perpendicular to the pin axis. 10 subcases are to
be run, in which the applied load direction ranges from 0 to 180
degrees, or net lug axial tension (-X direction in Figure 3) to net
compre551on (+X direction), in steps of 20 degrees about the pin
axis. Lateral symmetry obviates the need to run cases in the 180 to
360 degree range.

MSC/NASTRAN's Version 66, Solution 66 was used for the nonlinear
(stiffness iterating) solution. CGAP elements were used with a
compression stiffness of 11.11E6 lb/in and a tension stiffness of
11.11 1b/in (the tension stiffness should ideally be zero, but MSC
recommends that the CGAP's "open" stiffness be 1/1,000, OOO of the
"closed" value for improved convergence). To speed execution,
superelements were used. All grids connecting to gaps (two rows on
the pln, and the inner circumference row of the lug's hole) were
put in superelement 0 (the "residual" superelement). The remaining
pin grids were put in superelement 1, and non- gap lug grids were
assigned to superelement 2. Default convergence criteria and the
AUTO iteration scheme were used. Table 1 shows the CPU time
required for each step of the 10 runs made. The initial database
setup and solution of the first loading condition took 60 seconds;



the 9 additional loading case restarts took an average of 21
seconds. Total CPU usage was 251 seconds in 10 separate runs.

The Enforced Strain method used Version 66's Solution 101 (linear
statics with restart). CGAPs were replaced with linear CRODs of the
same 11.11E6 1lb/in stiffness. Superelements were not needed and
were not used. The first run solved for CROD loads for the 10
loading conditions. A second run solved 72 additional load cases in
which a unit enforced strain was applied to the 72 gap RODs. An
external program then calculated the enforced strains required to
make gap loads consistant with their deflections in the 10 loading
cases; this step took 5 CPU sec. The DEFORM cards were added to the
database and rerun for the final nonlinear solution. Total CPU
usage was 139 sec. of NASTRAN time in 3 separate runs, and 5 sec in
the external compensation program (shown in Table 2).

Discussion

Tables 3 and 4 compare CGAP and CROD loads from the Solution 66
nonlinear and the Solution 101 linear compensated runs. The first
36 CGAPs are at the top of the pin (for load introduction), and the
second 36 are between the pin and inner beam lug. Subcase 11 shows
the bearing loads from the net tension case, while Subcase 15 is a
combined lateral and axial condition in which the load is applied
80 degrees off centerline. Apart from a sign convention difference
between the CGAP and CROD elements, the most pronounced discrepency
between the two solutions is 12 1b out of an average 18,400, or
0.07%. This small difference is due first to the non-zero "“open"
CGAP stiffness required for Solution 66, and second, to a limit of
7 digits of accuracy on the CROD load output used to build the
coefficient matrix [C] for the Enforced Strain solution.

Table 2 shows that almost half of the CPU time (68 of 144 sec) used
by the Enforced Strain method was in the Unit-Strain restart run,
whose sole purpose was to obtain the coefficient matrix [C]. It has
been noted that [C] could be formed directly from the stiffness
matrix [k] using relatively simple matrix transformations. For this
example, inverting (k] required 18 of the 51 CPU sec for the
initial linear run, and constitutes a far more demanding task than
generating [C]. Assuming it to take half as long as inverting [k],
calculating [C] would take 9 sec instead of 68; coded as a DMAP
alter to the linear solution, total Enforced Strain method CPU time
would then be 85 CPU sec (versus 251 CPU sec for Solution 66),
reducing CPU times by a factor of 3. Furthermore, a solution for
all 10 cases would be obtained in a single run.

The Enforced Strain method has been used for several years at Bell
and has simplified the analysis of large nonlinear FEMs with many
loading conditions. The CPU time savings referenced are typical of
the results obtained at Bell, and have been frequently exceeded.

7



Conclusions

CPU time comparisons are important in that several FEM codes
(MSC/NASTRAN, for example) charge royalties based on CPU usage; it
is a useful measure of computational power required by a given job,
and of its turnaround time. For the lug problem presented, the
stiffness-iterating nonlinear GAP Solution 66 required the use of
superelements, and that 10 separate runs be made (1 per loading
condition). The Enforced Strain method as presented needed only
three runs and 43% as much CPU time as Solution 66, and did not
require superelements. Had the method been implemented within the
FEA code (using DMAP alters, for instance), all 10 conditions could
have been solved in a single run, and would have required only 33%
of Solution 66's CPU time. Experience with larger models support
the comparisons made here.

The Enforced Strain method is a viable alternative to the existing
stiffness iterating nonlinear solutions, and can be used with
linear FEA codes that support enforced strains and/or thermal
expansion.
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FIGURE 1.

Load vs. deflection curves for a linear element (A) and three
gap-type elements (B through D). The horizontal axis represents the
element's change in length under load (extension to the right,
contraction to the left), and the vertical axis is the element's
resulting load (tension above the origin, compression below). Slope
of the curve is the element's stiffness, K.
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Initial Database, First Condition 60 sec.
Restart, Condition 2 20 sec.
Restart, Condition 3
Restart, Condition 4
Restart, Condition 5
Restart, Condition 6 21 sec.
Restart, Condition 7
Restart, Condition 8

9

0

Restart, Condition 23 sec.
Restart, Condition 1 20 sec.
Total , 251 sec.

TABLE 1.

CPU requirements of the 10 Solution 66 Nonlinear runs. Restarts
were used to save CPU time on processing the model and generating
the initial stiffness matrix; superelements also were used, so that
only nonlinear element GRIDs were in the iterated stiffness matrix.

Initial Database, 10 Conditions 51 sec.

Restart, 72 Unit-Strain Cases 68 sec.

External program, solve for Enforced Strains 5 sec. *

Restart, 10 Original Cases + Compensation 20 sec.

Total 144 sec.
TABLE 2.

CPU requirements for the Enforced Strain Solution using an external
compensation code. Incorporating the technique into the FEM would
significantly reduce the CPU time listed by eliminating the Unit
Strain restart step.

* CPU time not in NASTRAN.
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TABLE 3.
-STRAIN SOLUTION TO SOL. 66 GAP RESULTS
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TABLE 4.

COMPARISON OF ENFORCED-STRAIN SOLUTION TO SOL. 66 GAP RESULTS
SUBCASE 6: 250,000 LB. AXIAL + TRANSVERSE LOAD (100 DEG., OUTBOARD C.L.)

ELEM LINEAR LOAD COMPENSATION NONLINEAR
ID (LBS) (MICRO IN/IN) (LBS)

GAP EXTENSION GAP LOAD
(MICRO IN/IN) (LBS)

1

|

!

|

|
101 13589.8 74616.0 0.0 { -74635.9 -0.8
102 13972.7 79109.5 -0.0 | C78117.2 -0.9
103 13919.5 77292.6 0.0 i -77286.9 -0.8
104 13421.4 69420.3 0.0 j ~€9402.0 -0.8
105 12482.9 56709.8 -0.0 i -56682.5 ~-0.86
106 11120.3 41183.8 0.0 ; ~41153.7 -0.5
107 8371.1 25382.8 ~0.0 i -25366.5 -0.3
108 7291.6 11948.4 -0.0 ;] ~11930.7 -0.1
109 4949 .4 3059.2 0.0 ! -3051.0 -0.0
110 2436.8 0.0 -8014.4 i 722.6 8028.5
111 -162.7 0.0 -15918.4 i 1432.4 15913.8
112 -2723.3 0.0 -16561.3 | 1490.4 16558.2
113 -5174.0 0.0 -17814.7 | 1603.4 17813.8
114 -7425.7 0.0 -19445.0 | 1750.2 18444.7
115 -8404.7 0.0 -21021.4 i 1892.1 21021.2
116 -11052 .1 0.0 -22280.5 | 2005.5 22280.7
117 -12328.5 0.0 -23184.5 i 2086.8 23184.4
118 -13204.9 0.0 -23781.1 I 2140.6 23782.0
119 -13673.0 0.0 -24109.8 i 2170.1 24110.2
120 -13735.4 0.0 -24186.6 i 2178.0 24197.7
121 -13397.6 0.0 -24045.2 i 2164.3 24045.2
122 ~12681.3 0.0 -23642.4 ! 2128.1 23642.8
123 -11612.9 0.0 -22955.0 i 2066.2 22955, 1
124 -10226.8 0.0 -21938.3 i 1974.6 21938.2
125 -8562.6 0.0 ~20575.2 | 1851.9 20574.9
126 -6669.6 0.0 -18954.4 | 1706.0 18953.7
127 -4589.8 0.0 -17169.2 | 1545.4 17169.7
128 -2387.6 0.0 -15518.0 i 1396.8 16518.9
129 -114.8 0.0 -14717.2 i 1324.9 14719.6
130 2171.5 0.0 -12071.5 | 1086. 1 12067.0
131 4404 .9 1067.4 0.0 I -1070.7 -0.0
132 6531.4 7900.3 -0.0 I -7910.0 -0.1
133 8491.3 19680.0 0.0 | -19698.3 -0.2
134 10228 . 1 34676.0 0.0 1 ~34702.2 -0.4
135 11680.6 50478.4 -0.0 I -50508.5 -0.6
136 12828.¢ 64539.3 0.0 | ~64567.3 -0.7
201 -13428.9 0.0 -23486.7 { 2113.8 23484.8
202 -14031.5 0.0 ~23805. 1 I 2151.6 23904.0
203 -14312.0 0.0 -24219:.4 i 2179.9 24218.6
204 -13950.9 0.0 ~24066.3 I 2166.2 24066.0
205 -13258.7 0.0 -23804.8 [ 2142 .7 23804.8
206 -11827.8 0.0 -22878.6 i 2059.3 22878.8
207 -10208.5 0.0 -21488. 1 [ 1934.2 21488 .4
208 -8019.3 0.0 -19705.3 { 1773.86 19705.1
209 -5422.7 0.0 -17801.7 i 1602.3 17801.8
210 -2586. 1 0.0 -15886.1 i 1429.8 15884.8
211 330.9 0.0 -10858.7 [ 976.5 10849.2
212 3169.0 1388.9 0.0 -1392.7 -0.0
213 5744.0 8612. 1 ~-0.0 I -8617.7 ~0. 1
214 7979.3 20049 .4 0.0 [ -20055. 1 -0.2
215 9969.2 33970.8 0.0 | -38976.0 -0.4
216 11400. 1 48229.0 0.0 [ ~48230.5 ~-0.5
217 12546. 1 60832.1 0.0 | -60827.2 -0.7
218 13127.6 70152.5 0.0 i -70141.3 -0.8
219 13361.5 75118.9 0.0 ; -75104.2 -0.8
220 13333.0 75227.8 0.0 ! -75213.3 -0.8
221 12888.8 70494 .3 0.0 1 -70481.7 -0.7
222 12128.3 61523.3 0.0 | -61513.5 -0.5
223 11055.3 49415.4 0.0 | ~-4%407.8 -0.4
224 9701.8 35694.3 0.9 | ~356%0.0 -0.2
225 8101.0 22162.8 0.0 I -22163.2 -0.1
226 6283.8 10691.4 0.0 | -10693.6 -0.0
227 4324 .7 2868.8 0.0 [ -2869.3 —-0.0
228 2240. 1 0.0 ©5936.5 534.2 5934.5
229 89.2 0.0 -12964.3 i 1166.9 12964.0
230 -2077.5 0.0 -14519.3 [ 1306.8 14518.9
231 -4208 .4 0.0 -16231.3 I 1460.9 16230.9
232 -6251.5 0.0 -18080. 1 { 1627.3 18079 . 1
233 ~8154.6 0.0 -19745.3 1 1777 .1 19743.8
234 -9872.3 0.0 -21155.8 i 1804.0 21154.0
238 -11353.3 0.0 -22223.2 | 2000.1 22221.1
236 -12583. 1 0.0 ~23005.8 I 2070.6 23003.8
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