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ABSTRACT

This paper presents a solution to nonlinear formulated problems
using eigenfunctions computed by a linear free vibration sclution.
The system of equations is extremely reduced. The solution is
unique in its formulation as the governing equations represent the
problem continuously and do not require an iterational or
incremental solution. Energy consideration is used and the Ritz
method is applied to render the governing equations. An integrated
system was built in which the current analysis functioned as a
MSC/NASTRAN dummy module integrated with MSC/NASTRAN SOL 3 and SOL
24 to render the mode shapes and geometrical and material
properties respectively. Several numerical examples are presented
and compared to solutions from the literature.



INTRODUCTION

) The solution of nonlinear static and dynamic problemg has
been intensively investigated over the last decade. The main
effort lies in trying to create general purpose codes and making
them as efficient and computationally cheap as possible. The

direct approach 123 yas based on the formulation of a certain

problem using the nonlinear strains/displacements relations and
then developing the displacements into series of products of
functions and coefficients and then applying a Ritz method or any
weighting residual technique such as the Galerkin method. The set
of unknowns was more efficiently chosen by replacing the inplane

displacements by Airy stress functions 1’3. Basically the above
mentioned works are followed by today’s methods but the key change

lies in the choice of functions. In 2 transcendental functions
were chosen such that geometrical boundary conditions are

satisfied. Stein 2 used the Kanterovitch like method in which the

coefficients are fuﬁctions as well. Sheinman and Frostig 3 chose
natural modes of a degenerated problem for each component of the
displacement vector. A different approach usually used in the

finite element method was the updated Lagrangian 4 in which an
iterational procedure was applied on a linear formulation. Another

tyﬁe of linearization ° used an adapted Newton method. The use of
the natural modes of the problem first started in the solution of

6,7,8

problems in dynamics then in static problems such as large

deflection and postbuckling 9,:10,11,12 st works used a finite

element formulation in which the governing equation is
discretized, a tangent stiffness matrix is generated and the

solution is rendered by iterations. In 6 a 1-D piping problem was
discretized into lumped masses and springs. Incrementation was

R : 8 X 12
used in time and in space

This paper offers a new approach in which the kinematics and
the strains/displacements relations are nonlinear. The governing
equations are continuous and discretization is done only in the
representation of the mode shapes which are rendered by a

dynamical solution using MSC/NASTRAN14. The solution utilizes an
appropriate selection of the truncated eigenfunction series.

KINEMATICS

The formulation is based on energy consideration. The method
presented in this paper is demonstrated on plate elements, while
other types of elements are treated in the same manner
respectively. The convention of geometry as well as stress
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resultants and couples is presented in Fig. 1.

A beginning is made with the choice of the order of the theory
in which the displacements are described. Classical plate theory
was chosen here as follows,

Uy =y - X3Uz 4 (1la)
u, = U - Xgug (1b)
Uy = Uy (1c)

in which Uy, U, U; are the displacements in a local Cartesian

coordinate system oriented to 1, 2 and 3 directions respectively.
Uy, Up, Uy are the mid plane displacements in the relevant local

directions and X3 1s the 3r? coordinate.

The strain displacement relation expression is taken in the
nonlinear form as follows,

1
€15 7 30,5 + Uy y + U U ) (2)

Substitute (1) into (2) to obtain,

1.2

€11 = Ug,q ~ XaUz 43 * 43,1 (3a)
_ - xau + 148 (3b)

a3 T Uz 5 ~ X3Ujz op 543,2

€12 T Uy,p ¥ Uy g — 2X3u3 g, + Uz 1U3, 2 (3c)

Eq.c (3) may be separated into the midplane strains,

° 12
€11 = Up,q * JUg, (4a)
o 2

= 1
€az = Uz,2 * JUs (4b)
e )
€12 T Uy 5 F Uy g + Uz U5 5 (4c

and curvatures,

X11 = ~Ug 44 (5a)
Xaz = —Uz 55 (5b)
X12 = —2U3 4, (5¢)



ENERGY CONSIDERATION

The expressions for the strains, eq. (4) and curvatures, eq.
(5) are used to build the total energy functional Il as follows,

MT=V+Q+U (6)

in which V is the strain energy. U is the potential energy of the
initial Iinplane force resultants applied to the plane in the
prebuckled state. The latter loads are combined of the applied
inplane edge loads plus the 1loading induced by bending when
transverse load is applied. Q is the potential energy of the
external loads in all directions, distributed over the surface. Q
is built up in conjunction with the virtual work done by the
components of the external loading n;, n,, ng, through an

Infinitesimally small virtual displacements &8u;, &8u,, Su,

respectively.
The strain energy V is,

Ir 0y 4€y dx, dx,dx (7)
A

N
N[T S s

Using plane stress approach in (7) we obtain, .

N[ =
N|T S N|o

I (ogg80; + 0pp€0 + 045815) dxydxydx; (8)
A

Integrating (8) over the thickness, all stresses turn into the
resultants Nij in accordance with the midplane strains, while

those related to the curvature create stress couple terms M; ;-
Therafter substitution of (4) gives,

1 1 2 2
V= gff [5(N11u3,1 + Nppug 5 + 2Njoug qu; ) +
A
Nyqug g+ Nppup 5 + Nypluy 5+ uy ) -
MiqUg 11 = Mppug on — 2Mypus 4o] dxgdx, (9)

The potential energy U is formulated as follows,

- - * - *
u=1Jf (N11€:1 + Nppgop + Nypegp) dxgdx, (10)
A



in which ﬁij are the prebuckled inplane force resultants and e:j
are the nonlinear part of the nonlinear form of €
Thus,

j*

1 N2 N2 iy
U= S0 (Njgugy + Nppug 5 + 2Njus yup ,) dA

(11)
A
Finally the potential energy due to external loads,
Q = -JJ [nyu; + nyu, + njuy +
' MUz o * MUz g + Myp(uy 5 + up 4)] dxydx, (12)

Eqns. (9), (11) and (12) altogether form the total energy
functional T in terms of the displacements u;, the stress

resultants NiJ and the stress couples Mij and the external lpads
my and n; as given by,

1 1 . 2 - 2
H=£fj{ 5[(N11 + 2N11)u3,1 * (sz + Zsz)ua,z *
A

2[”12 + 2N12)“3,1U3;2] +
Nyjug,; + Nppup 5 + Nypluy  + Uy q) -
MiqUz 19 — Mppuz oo — 2Moug 45 -

2|:n1u1 + DUy + DUy + MU 5 +

mug g + mypluy , + u2,1)] } dx,dx, (13)

In order to turn (13) into a whole displacements expression,
we use the constitutive relations to render strains and curvatures
out of the resultants and couples. Classical laminate theory is

used,
NL _ 14 Bl Je ) (14)
M BD X

In which A, B and D are the well known rigidity matrices. Then the
strains - displacements relations (4) and (5) are used again, to
obtain T in terms of displacements rigidity coefficients and
external loads.



GOVERNING EQUATIONS VIA RITZ METHOD

Since the functional T is self adjoint, one may use the Ritz
method in which first the displacements atre developed into series
of functions multiplied by coefficients. The self-adjointness
allows one to choose functions which are of the admissible
functions space which means that they have to satisfy the
geometrical boundary conditions only (neither the differential
equation nor the dynamic boundary conditions need to be satisfied)
and be p times differentiable (the differential equation is 2p
times differentiable). The above requirements are in addition to
the regular requirements from trial functions which have to be
linear independent orthogonal functions taken from a complete set.
The Ritz method is the basis for modern numerical approximations
such as the finite elements method and also equivalent to other
widely used methods such as the Galerkin method. The major
disadvantage of the Ritz method is in the choice of the trial
functions which have to satisfy the above requirements and may be
a very difficult task for a generally shaped structure. In this
paper it is proposed that trial functions for the nonlinear
formulation be chosen from the best inventory which is the set of
the eigenfunctions rendered by a linear solution of the relevant
structure. These functions also known as mode shapes, satisfy
inherently the gecmetrical boundary conditions and have physical
meaning rather than being a pure mathematical choice. The overall
mode shapes may be separated into components in the three local
directions 1, 2 and 3 in conjunction with the coordinate system.
Since the components of each mode are computed with their true
values within the mode (which means that they are related to each
other numerically), there is a need for only one participation
factor for the entire mode. This one factor is applied to all
three components of a single mode within the developed series.

u1=§§m®m (15a)
u2=§§mwm (15b)
u3=§€m®m (15c)

Where ¢,, ¥, and 8, are the components of the mth mode in the 1, 2
and 3 local directions respectively, and €. 1s the participation

factor of the mth mode.
The Ritz method is formulated,

om _

i=1..m (16)
8&, .

Substituting (14) into (13) in conjunction with (4) and (5), then
replacing the displacements by (15) and performing the
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differentiation as stated in (16) yields m cubic equations with
the unknowns & as follows,

“’ (@iylgl)(gj,lgj)(e)k,lgk)[Allm,l * A13®m,2]/2
A
+ (@i,zgi)(@j,zgj)(@k,zgk)[A22®m,2

+

A238n,1] /2
+ (91,151)(%,151‘)(@1(,251()[Aizgm,z + 3A58, 1t 2A33®m,2]/2
+ (8;,€,) (85 ;) (8 ,&,) A218p 1 + 3Ax50, ot 2A33®m,1]/2

+ (@)1,151)(@5,151)[/\11%,1 * AVt Aa(®y o+, )
= B118n,11 ~ B12B®y 2n - 2B13m,12]/2

+ (91,251)(91,2‘53)[”*21%,1 * AgaVn, o * Anz(®y o+, o)
= Ba1Bn,11 — Boo®p op - 2B23@m,12]/2

* (16,0 (8 16)) [A1s8n 1 + AsyE, ]

+ (@i’igi)(\pjizgj)[;\-m@m,l + A3z@m,2]

+ (9;,,€;) [(@j,g*"lfj,l)ij] |:A13®m,1 + A33®m,2:l
- (@i,1§i)(@j,11§j)[B11@m,1 + B31@m,2:|

- (@i’lgi)(ej,22€j)[13129m,1 + Baz@m,z:l

= (84,18;) (®},15€)) [B1aBa,1 + Bagh,2) *2

+ (@i’zgi)(@j,lgj)[Am@m,z + A31®m,1]

+ (91,2€1)(‘PJ,ZEJ)[A22@m,2 + A32®m,1]

+ (@i,zgi)[((pj,2+q’j,1)€j] [A23®m,2 + A33®m,1]
- (®y,28,) (8,118 ) [ByB, 5 + BBy 1

- (®i,2€1)(®j,22gj)[B22®m,2 + B32®m,1]

(@i,2€1)(®j,12€j)[B23®m,2 + B33®m,1]*2



+ (@1,1€1)(®j,2€j)[A13¢m,1 + Agg¥n o + Agz (@ o+, o)
- B31@m,11 - B23@m,22 - 2B33®m,12]
+ 51(‘1’1,1[/\11%,1 Al 2 t A8y o+Y, )
' - B118n,11 = B1oBy, 22 - 2813@m,12]

+ Wi,z[A21@m,1 + Al o * Aza(Qm,2+Wm,1)
= B21Bn,11 = B2o®y 2p - ZB23@m,12]

+ (Qi,z*wi,1)[A31¢m,1 * Azl 2 + Ags(@y o+Y, )
= B318n,11 ~ Baly, 22 - 2B33®m,12]

- @i,11[B11¢m,1 + Byp¥y o + By3(®, o+¥, 4)
= D118n,11 = D128y 2p - 2D13@m,12]

- @1,22[321¢m,1 * Boaly,2 + Bag(@, 49, )
= D21€n,11 ~ DagBh 22 - 2D23®m,12]

- 291,12[531@m,1 * Bapl¥y, 2 + Byg(@, 240, 4)
- D31®m,11 - D32®m,22 - 2D33®m,12]

+ ﬁll(@l,1®m,1) + N12(®1,1®m,2+®i,2®m,1) + N22(®i,2®m,2))/4 } dA

=[S { M8z * M8y g + My (B o+, 1) + 0@ + ny¥, + 08, } dA
A
17)

The indexes in eq. (17) act in a tensorial sense following
Einstein summation rule.

SOLUTION PROCEDURE

Once all terms in eq. (17) are computed it may be written in
a matricial form,

(K14} + [Kpl{E,} + [K'14E,6,) + (K€, €} = {P)
i, j, k=1..m (18)
where,

1 . . : - . .
[K;1- generalized stiffness matrix same as in linear analysis,

order: [m x m]



[Ké]— generalized linear stiffness matrix consists of force terms
order: [m x m]

[KZ]— generalized stiffness matrix related to quadratic terms,
m(m+1)

order: [m x 5 ']

[K3]- generalized stiffness matrix related to cubic terms,
m(m+1) (m+2)

order: [m x 3

]

{P}- generalized forces vector of order [m]

The set of the m nonlinear algebraic equations (18) was solved by

the IMSL routine ZSPOW'® for € and then enabled to render the
displacements by substitution into eq. (15).

Eq. (18) may solve several types of problems. Dropping the
cubic and quadratic series products and observing the remains it
is realized that one may solve a linear stretching and bending
problem. If in addition to the above one drops the RHS terms and
ends up having the homogeneous equations for a linear buckling
solution. On the other hand, considering all nonlinear terms one
may compute a large deflection problem related to inplane and out
of plane loads or one may ignore the out of plane loads and solve
for a postbuckling problem. Materials of different orientation
behavior such as isotropic or orthotropic materials may be handled
by relevant treatment of the A, B and D matrices components.

Based on the above described analysis, a system was developed

in which a computer code called ANLISA 16 (Advanced NonLinear

Integrated Structural Analysis) was regarded as a MSC/NASTRAN
“dummy module", combined with two MSC/NASTRAN solutions: SOL 24
and SOL 3. The solution procedure is as follows. A MSC/NASTRAN
related finite element model is built. The user runs MSC/NASTRAN
Wwith additional cards which leads to the special system. At first,
SOL 24 1is executed in order to create the data blocks in
conjunction with the model topology and material properties. SOL
24 which is a linear static analysis, provides the information
about the linear stage such as prebuckling for a stability case.
This information is necessary for the creation of the potential
energy U shown in eq. (10). Next, SOL 3 is executed automatically,
providing the components of the mode shapes which are then used in
the dummy module ANLISA as ©, & and ¥. ANLISA gathers all the
information into the process of building up the system of
equations and solves for the unknowns which are the &€, The

integration and differentiation techniques used in the process of
creating eq. (18) are the same as used by MSC/NASTRAN in order to
achieve maximum compatibility with the source of the
eigenfunctions. The resulting displacements are returned to
MSC/NASTRAN and may be presented by the MSC/XL post-processor.



NUMERICAL EXAMPLES

Several numerical examples are presented. The types of the
nonlinear problems covered are large deflection and postbuckling.
The problems are applied on isotropic materials and composite
materials chosen with respect to the literature for the sake of
comparison. Two cases of large deflection of an isotropic square
plate were examined. First case is for a plate simply supported
all around and the second case is for a plate clamped all around.

These cases were compared to graphs presented by Chia 1. Next a
postbuckling case of a laminated composite plate was computed and

compared to results produced by a computer code developed in 3 and
used by courtesy of the authors. Nonlinear analysis requires
eigenfunctions which are highly located in the complete series.

Therefore an advanced scheme'®> called "The fictitious masses
method" was used to "reduce" the location of these eigenfunctions.
This method incorporates fictitiously chosen large masses which
artificially change the relations between the real stiffness and
mass matrices. In result, what had to be computed as high mode
shapes are "attracted down", performing as low mode shapes in
correlation with the location and direction of the induced
fictitious masses. This method helps in cases of local phenomena
such as hole edges, stiffener caps etc. Large fictitious masses
should then be put in these locations in relevant directions and
the result of a free vibration analysis is that what usually
appears as a very high mode in conjunction with the location of
interest, appears now as one of the first few mode shapes of the
structure. In the case of statics, no further action is required,
but in the case of dynamics, this method results in unreal
frequencies. Therefore it requires to filter out the unrealistic
influence of the fictitious masses. A filtering technique for this

case is presented by Karpel 13. Any number of modes shown in the
examples implies on these wisely chosen selection of
eigenfunctions and not on contiguous modes from the original set.

Figure 2 shows the analysis carried out for a square simply
supperted laminated plate made of graphite epoxy AS4/3502 in which
E,4=2.1e7 psi, E,,=2e6 psi, G,,=0.56e6 psi, v,,=0.24 and the layer
sequencing was (£45)_ with ply thickness of 0.005 in.

The plate was loaded axially by a distributed load. In the

analysis following Sheinman et. al.3, a geometrical imperfection
was used as a trigger to pull the linearized system of equations
out of equilibrium state. The usage of a geometrical imperfection
leads to numerical problems. Too small geometrical imperfection
provides erroneous results and therefore there is a lower bound on
its size. In the current work though, a direct integration was
used to solve the nonlinear system and a transverse load was
chosen as the imperfection. This was proven very efficient since
any small value met the requirement and it may be seen in figure 2
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that the imperfection is hardly noticed. In fact the analysis of 3
yields the current analysis as its asymptotic solution.

In order to meet the curves presented by Chia 1, the same
normalization scheme was used in the two cases of the large
deflection analysis. The normalization terms may be seen at the
axes of figures 3 and 4 for the simply supported and clamped cases
respectively. The horizontal axis presents the normalized load and
the vertical axis presents the normalized plate mid-point
deflection. Four and eight mode shapes were taken for the analysis
of the simply supported plate and the differences may be observed

in figure 4 as they are compared to the curve presented by Chia !

For the clamped plate four mode shapes were used and the results

as well as the comparison with Chia ! is shown in figure 3.

CONCLUDING REMARKS

A new method was presented for nonlinear analysis of
structures and compiled into an integrated computer system.
Solutions of typical nonlinear problems were presented as well as

comparisons with the literature. Quoting D. Tao and E. Ramm 1,

"The key question still remains how well the basis vectors capture
the deformation modes of the structure". This problem is clearly
recognized by the authors but since the current formulation
provides a continuous set of nonlinear equations there is no need
for 'new modes’ to be used along different stages of the analysis.
Nevertheless, the set of eigenfunctions has to be chosen in a way
that it would be representative throughout the entire range of
responses. Therefore only a selection of eigenfunctions, not
necessarily contiguous, are chosen ocut of the complete set.

Once the proper set of eigenfunctions is selected, the system
of equations is highly reduced compared to any other known method
and thus proven to be very successful. In fact the generality of
this method is obvious as it may be applied on any problem which

can be presented through a model of linear finite element method
code.
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Fig. 1: Coordinate system of plate and
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Fig. 3: Large deflection
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ig. 4: Large deflection
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