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ABSTRACT

A refined analysis method is proposed for predicting the
distribution of vehicle lived loads on bridge girders. An effective
and efficient iteration scheme is used to solve the nonlinear
equations. Two representative bridge systems are investigated. The
obtained results from the proposed method are compared to
experimental data and those obtained from other analysis methods.
The prediction method for live-load distribution implemented in the
current bridge design code is carefully examined. The paper
concludes with a number of actual bridge examples and

recommendations.



INTRODUCTION

Bridge structures are difficult to be analyzed due to their
complex geometries and the vehicle 1live 1locads involved. 1In
practice, such systems are usually analyzed and designed by a
simple design method that 1is largely based wupon the past
experience. It is also seen that, in cases that research evidence
is not sufficient, empirical or semi-empirical methods are often
used instead. Such methods are found to lead to overly conservative
designs in many incidences. They even result in unsafe results in
some cases. The proposed new bridge specification [1] realizes the
concerns described above, and recommends the use of a refined
analysis method when deemed necessary. Furthermore, under the
proposed code [1] design forces may be reduced by fifteen percent
if a refined method such as finite element method is used.

As identified in Reference [2], there are several bridge
issues that require further studies by employing refined analysis
methods. This paper focuses on the prediction of the 1lateral
distribution of vehicle live loads on bridge girders, which is
being an important issue to the economical design of bridges. The
method for determining the live-load distribution factor for "I-
shape" girder bridges implemented in the present bridge design code
[3] is still based on a simple and empirical formula [i.e. egn (12)
to be discussed later in the paper]. To verify the accuracy and
adequacy of that simple formula, a finite-element based refined
approach is proposed and discussed in details in the paper.

PROBLEM DESCRIPTION

Two simple-span bridge systems, "BRIDGE 1" and "BRIDGE 2" as
shown in Fig. 1, were considered in the pilot study. The former has
the span 1length (L) of 68.5 feet and center-to-center girder
spacing (S) of 8 feet. The latter has L of 78 feet and S of 7 feet.
Both bridge deck systems are made of I-shape prestressed concrete
(PC) girders whose cross-sections are shown in Fig. 2 (AASHTO TYPE
ITII). The analyses were performed with the aid of the general-
purpose finite element program MSC/NASTRAN [4]. Transverse
diaphragms were provided at the midspan of each girder for both
bridge systems, as shown in Fig. 2(b).

EQUATIONS OF MOTIONS

The physical problem on hand is being studied statically. As
a good practice, 1linear analysis always precedes nonlinear
analysis. The finite element system equilibrium equations for a
linear static analysis can be expressed by the vectorial equation
as follows

(K] {U} = {R} (1)



where [K] is the structural stiffness matrix, {U} the displacement
vector, and {R} is the externally applied load vector.

While for nonlinear static analysis the equilibrium equations
to be solved are:

{Rresae = {Flesae = {03 (2)

where {R} ;s 1is the vector of externally applied nodal loads at
load step tgbt, and {F},.a: is the force vector equivalent (in the
virtual work sense) to the element stresses at load step t+0t.

To solve the incremental equilibrium equations [eqn (2)], an
effective and efficient quasi-Newton iteration scheme similar to
Reference [5] was used. The algorithm of the iteration scheme can
be described by eqns (3) and (4) as follows:

[K*]t+0t(i_1) {OU}(J-) = {R}t+0t - {F}t+0t(i—l) (3)
[Ulesae) = (Uheaae ™7 + 8D (03 (5) (4)

where [K*]i,ac(1™!) is an updated stiffness matrix, {FYeine (1Y) the
consistent nodal force vector corresponding to the element stresses
due to the displacement vector [Ulg,ae(*™1), {0U}(Y) the incremental
displacement vector in iteration i, and 8% is an acceleration
factor obtained from a line search in the direction {0U}(}) such
that

{005 [{Ryespe = {Fresae't))

10U [{Rypspe - {Flesae M)

< convergence limit (5)

It is noted that [K*]t+t(l'1) is not explicitly formed, but
instead the inverse of the stiffness matrix is updated using vector
products to provide a secant approximation to the stiffness matrix
in successive iterations. The update of matrix is performed only at
the solution steps specified by the user.

FINITE ELEMENT MODELING

The analyses were accomplished using the general-purpose
finite element program MSC/NASTRAN [4]. The bridge deck structural
system was modeled using both "shell" and "beam" (stiffeners)
elements, as shown respectively in Figs 3 and 4. A standard
quadrilateral (four-node) shell element of constant thickness
coupling bending with membrane action was incorporated in modeling
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the horizontal slab. Stiffeners were described using a standard
isoparametric (two-node) beam element. The composite action of the
beam and slab was effected by connecting the centers of the slab
and beam elements with rigid links/elements, as shown in Fig. 2.
This produced correct constraint relations for displacements of the
slab and beam.

Because the slab was modeled separately from the beam, it was
possible to use different material properties for each structural
element. This was desirable since, typically, the concrete strength
for the cast-in-place topping is lower than the one in the precast
concrete tees. To better represent the structural behavior of the
deck slab, it was modeled as an orthotropic plate. To do this, an
orthotropy factor, Dy, based on the ratio of center-to-center
spacing, S, to clear span was introduced (see Fig. 5). Its value is

Dy = (girder spacing/clear slab span)2 (6)

In MSC/NASTRAN program, this can be done easily by multiplying
the material properties in the transverse direction by D,.

Support for the structure consisted of a roller at each end of
the beams. This roller provided resistance to vertical (z-
direction) movements only. The beams were, therefore, free to
rotate at their ends. For structural and numerical stabilities, as
shown in Fig. 1, no x-displacement was allowed at A and B, and
hinge support was applied at C and D. The finite element mesh was
proportioned so that the maximum aspect ratio of the gquadrilateral
elements always remained at about two to one or less.

Typical discretization of the bridge deck structure is shown
in Fig. 1.

MATERIAL MODELS

For linear analyses, an orthotropic material model was used
for the slab. Elastic material properties are summarized in Table
1, where E is the modulus of elasticity and p is Poisson's ratio.
For nonlinear analyses, the complete concrete model as shown in
Fig. 6 was adopted [6]. The curve portion, AB, is described by

2 €, €¢
f. = £, Tt (7)
0.002 0.002

where f_, is the compressive stress, f.' the maximum compressive
stress, and €. is the compressive strain.

Elastic analysis uses the tangent stiffness, E., as shown in
Fig. 6. E. can be determined by



E. (ksi) = 57 [f_' (8)

where f.' is in pound/inch?.

In the present study, material softenlng (i.e. straight lines
BC and CD in Fig. 6) was not considered since a strain value higher
than 0.002 would be practically unacceptable. Maximum ten511e
stress for reinforced concrete materials was set to be 0.10 £,
For damping considerations, 3% of critical viscous damping was used
for linear analyses, and 7% for nonlinear analyses.

TRUCK LOAD

The movable wheel loads of a test vehicle used in the refined
static analysis are shown in Fig. 7, where the average wheel width
of 6.2 feet was used for simplification. Since the truck can move
to anywhere on the bridge, it is unlikely that the locations of the
wheel loads coincide with the nodes of the finite element model.
Current version of MSC/NASTRAN program [4] requires that
concentrated loads be specified at the nodal points. Therefore,
manual calculation of the equivalent nodal loads was needed.
Details for calculating such forces are provided in Appendix I.

The studied bridge systems belong to short-span type (< 140
feet). For such type of bridges, wheel loads usually control moment
and shear which are being of interest [3]. So, AASHTO lane loading
[3] was not considered in the analyses.

COMPUTATION OF THE COMPOSITE GIRDER MOMENT

The finite element program MSC/NASTRAN [4] requires the input
of the bare beam ("stiffener") properties: A (cross-sectional
area), I (bending moment of inertia), J (torsional moment of
inertia), E (Young's modulus) and G (shear modulus), Fig. 2, in
addition to the slab ("shell") properties. The output then lists
the axial force, P, and moment, M, that pertain to the beam element
at the center of gravity. These allow the computation of the

combined stress at the centerline of the bottom flange, Ccomb’r a8
follows
P M
O comb™= + (9)
A Sb,nc

where Spb, nc is the section modulus at the bottom of the beam with
"noncomp051te" action.

The moment carried by one composite section, M
determined from beam theory

comps Can be



Mcomp= O comb * sb,c (10)

where S, . is the section modulus at the bottom of the beam with
"composite" action. The composite section includes an effective
flange, b, with due consideration of shear lag effects. In general,
however, b= girder spacing (S) unless S exceeds 10 feet.

The following equation is adopted in the present bridge design
code [3] for calculating the bending stress at the bottom of the
beam, ogy:

where M is the bending moment produced by one single lane of
vehicle load on a simple beam, and DF is the distribution factor of
live load.

In design, for bridges made of "I-shape" concrete girders, DF
is determined by the following simple empirical formula [3]:

S
DF= — (12)
5.5

where S is the center-to-center girder spacing in foot (S< 14
feet).

NUMERICAL EXAMPLES AND RESULTS

Two representative bridge systems, "BRIDGE 1" and "BRIDGE 2",
as described above, were studied. The bridges were modeled three—
dimensionally. Both linear and nonlinear analyses were performed
Wheels were assumed to act at the middle of the bridge as shown in
Fig. 8. For verification and comparison purposes, another
recognized general-purpose finite element program ADINA [7] was
employed for these analyses. The finite element results and the
computed static responses using the method described are summarized
in Tables 2-5. To check the modeling for the bridge deck, studies
including one and two slab elements between the glrders were
conducted and their results are shown in Fig. 9 with the field test
result.

Computation time on IBM3090 mainframe machine was about 10
seconds for a typical three-dimensional (3-D) linear analysis, and
2% minutes for a typical 3-D nonlinear analysis.



DISCUSSIONS

Finite element programs are notorious for generating stacks of
printouts and a variety of results. It is essential that the
designer conduct some checks by independent means to detect any
gross error that may be introduced in the analysis through
incorrect input data. To achieve that objective, two types of
quality control checks were used:

1. Checking the general adequacy of the finite element
prediction by comparing to field test and other analysis
results. As shown in Fig. 9, the correlation is excellent,
especially when the two-slab element model is used (i.e.
"Analytic Results 1"). Parametric studies show that two-
slab element model is required if the girder spacing is
greater than 8 feet. As shown in Tables 2-5, MSC/NASTRAN's
results were fairly close to ADINA's.

2. Checking the total elastic results statically. To show it,
the 68.5-foot bridge is assumed as a simple beam subjected
to the wheel loads described in Figs. 7 and 8. Using
ordinary beam theory, this beam will produce an elastic
moment of 10,330 kip-in at the midspan, which is quite
close to what was computed by using the finite element
programs (+ 2%, see Table 2 and 4).

The bending stress at the bottom of the middle girder (i.e.
girder 3) under the same wheel loads (Fig. 8) would be 0.4868 ksi
for "BRIDGE 1" and 0.5452 ksi for "BRIDGE 2" as calculated by eqn
(11), which was 24% higher than the linear finite element results
(Tables 2 and 4) or about 43% higher than the nonlinear results
(Tables 3 and 5). Such difference would be even more evident should
the 15% discount permitted by the proposed new bridge code [1] be
considered in the refined analysis results. This indicates that the
distribution factor of live load calculated by the AASHTO formula,
eqn (12), is too conservative. Indeed, parametric studies showed
that the distribution factors calculated by eqn (12) were higher by
20% to 30% (without considering discounts) for typical "I-shape"
girder bridges than those derived from linear finite element
analyses. The degree of conservatism was nearly doubled if compared
to the nonlinear finite element results.

CONCLUSIONS AND RECOMMENDATIONS

The AASHTO formula, eqn (12), is generally too conservative
for predicting the distribution factor of vehicle 1live loads for
"I-shape" girder bridges. The finite element method wusing
MSC/NASTRAN program [4] not only gives good results, but also
provides more information that can not be p0551b1y obtained from a
simplified method. The refined method using finite elements
produces overall economy in bridge design, but must be used with
great care. MSC/NASTRAN program [4] can model a general bridge
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system easily and efficiently because of the varieties of elements
and material models built-in. It is predictable that finite element
methods will soon be widely accepted by practicing bridge engineers
and state and federal departments of transportation. To gain
recognition and make the computer program [4] more suitable for
bridge applications, several modifications can be made to the
program: (1) specification of unsymmetrical I-shape and box-shape
cross sections being often used for bridge girders and automatic
calculation of their sectional properties, (2) implementation of
AASHTO [3] vehicle movable loads (both truck and lane loads) so
that the tedious manual calculation of equivalent nodal loads can
be avoided.
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APPENDIX I. CALCULATION OF EQUIVALENT NODAL LOADS

Referring to Fig. Al, the equivalent nodal forces are
calculated according to the following equations:

A
1

P, = P * (A1)
TA
A,
TA
Aj

P; =P * (A3)
ZA
Ay

Py =P * (A4)
TA

where P is the wheel load, Ay, Ay, A3 and A, the tributary areas,
and TA is the total element area (= Ay + Ay + Ay + Ay).

N3 N
{
@ wheel Toad) Ay | Ay 1 (N1 - Na defining a finite
— —¢- — — —| element)
Mol Ay
N N2

Figure Al. Distribution of wheel load to nodes.



Table 1. sSummary of Elastic Material Properties
("BRIDGE 1" and "BRIDGE 2")
(units: kip, inch)
elastic
property slab girder diaphragm
E 3824 4488 3824
H 0.20 0.20 0.15
Table 2. MSC/NASTRAN "Linear" Finite Element Results and

Static Responses for "BRIDGE 1"
(Values in parentheses obtained from ADINA)

(units: kip, inch)
percentage of

girder P M O comb Moomp ~ total moment

1 2.997 338.4 0.060 615.1 5.9
(3.043) (343.5)  (0.0609) (624.5) (5.9)
2 58.59 922.3 0.2537 2602.1 25.0
(59.48) (936.3)  (0.2576)  (2641.7) (25.0)
3 97.31 1318 0.3868 3966.7 38.1
(98.79) (1338) (0.3927)  (4027.1) (38.1)
4 58.59 922.3 0.2537 2602.1 25.0
(59.48) (936.3)  (0.2576)  (2641.7) (25.0)
5 2.997 338.4 0.060 615.1 5.9
(3.043) (343.5)  (0.0609) (624.5) (5.9)

2= 10401.1

(10559.5)

Calculated by egn (9);

* %

Calculated by egn (10).-
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Table 3. MSC/NASTRAN "Nonlinear" Finite Element Results and
Static Responses for "BRIDGE 1"

(Values in parentheses obtained from ADINA)

(units: kip, inch)

*

* %

percentage of

girder P M 9 comb Meomp total moment
1 2.66 287.6 0.0512 525.3 5.8
(2.7)  (292.0)  (0.0520) (533.3) (5.8)
2 52.1 783.7 0.2198 2253.6 25.0
(52.9)  (795.6)  (0.2231)  (2287.9) (25.0)
3 86.6 1120.2 0.3357 3442.5 38.2
(87.9)  (1137.3) (0.3408)  (3494.9) (38.2)
4 52.1 783.7 0.2198 2253.6 25.0
(52.9)  (795.6)  (0.2231)  (2287.9) (25.0)
5 2.66 287.6 0.0512 525.3 5.8
(2.7)  (292.0)  (0.0520) (533.3) (5.8)
= 9000.2
(9137.3)
* calculated by egn (9); ** calculated by egn (10) .
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Table 4. MSC/NASTRAN "Linear" Finite Element Results and
Static Responses for "BRIDGE 2"
(Values in parentheses obtained from ADINA)

(units: kip, inch)

. o percentage of

girder P M 9 comb Mcomp total moment

1 3.357 378.9 0.0672 688.9 5.9
(3.408) (384.7) (0.0682) (699.4) (5.9)
2 65.62 1032.9 0.2842 2914.3 25.0
(66.62) 1048.7) (0.2885) (2958.7) (25.0)
3 108.99 1476 0.4332 4442.7 38.1
(110.64) (1499) (0.4398) (4510.4) (38.1)
4 65.62 1032.9 0.2842 2914.3 25.0
(66.62) (1048.7) (0.2885) (2958.7) (25.0)
5 3.357 378.9 0.0672 688.9 5.9
(3.408) (384.7) (0.0682) (699.4) (5.9)

- Z= 11649.2

(11826.6)

* %

Calculated by egn (9); Calculated by egqn (10}.
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Table 5. MSC/NASTRAN "Nonlinear" Finite Element Results and
Static Responses for "BRIDGE 2"
(Values in parentheses obtained from ADINA)

(units: kip, inch)

. - percentage of

girder P M O comb Meomp total moment

1 2.98 322.1 0.0574 588.3 5.8
(3.02) (327.0) (0.0582) (597.3) (5.8)
2 58.4 877.7 0.2461 2524.0 25.0
(59.2) (891.1) (0.2499) (2562.4) (25.0)
3 97.0 1254.7 0.3760 3855.86 38.2
(98.4) (1273.8) (0.3817) (3914.3) (38.2)
4 58.4 877.7 0.2461 2524.0 25.0
(59.2) (891.1) (0.2499) (2562.4) (25.0)
5 2.98 322.1 0.0574 588.3 5.8
(3.02) (327.0) (0.0582) (597.3) (5.8)

Z= 10080.3

(10233.8)

* %

Calculated by egn (9); Calculated by egqn (10).
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Figure 1. Investigated bridge systems and finite element discretization.
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Figure 3. Quadrilateral plate element and basic displacement components.
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Figure 4, Eccentrically attached beam/stiffener element.
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Fiaure 5. 2-plate mesh discretization and orthotropy factor (example).

Figure 6. Nonlinear model for reinforced concrete materials.
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