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ABSTRACT

Version 67.5 of MSC/NASTRAN includes finite deformation analysis for problems that
involve large strain and large rotation. The material law is Green—elastic (hyperelastic) with a
strain energy function of the generalized Rivlin type, extended to include the effect of compress-
ibility at the nearly incompressible limit. The stress—strain relations are discussed in some detail
as well as the approach taken to avoid the occurence of volumetric locking. Examples are pres-
ented that illustrate the capabilities of the formulation to model problems with large strain and
large rotation.



1. INTRODUCTION

Finite deformation analysis, which includes the effecl of large rotation and large strain, is
new to MSC/NASTRAN. The large rotation capability, provided with the PARAM,LGDISP,1
option for geometrically nonlinear analysis, assumes that the strains are infinitesimally small for
all elements except those designated as FD (Finile Deformation). The approach for these fully non-
linear elements is total Lagrangian, as opposed to the corotational approach followed in geometric
nonlinear analysis. A nonlinear strain measure is introduced, which is always measured from an
initial undeformed state. Figure 1 illustrates the total Lagrangian concept in MSC/NASTRAN.
The elements may be used in small strain sitvations and the results should be equivalent to those
obtained from the corotational analysis for geometric nonlinearity only. However, the element
library is not nearly as extensive: an 8§-noded brick and a 4-noded plane strain quadrilateral are
available. These seem to be adequalte [or the most part of nonlinear analysis that involves large
strains.

The large strain capability is provided with one material option, namely hyperelasticity. This
makes it applicable to materials undergoing large elastic deformations, such as elastomeric or rub-
ber-like materials, used in the automobile and other industries. Examples are tires, O-rings, bush-
ings, gaskets, seals and rubber boots. The most striking property of these materials, unfilled natural
rubbers in particular, is their ability to withstand very large strains with very small deviation from
clasticity. The stress—strain behavior of such materials is markedly nonlinear: A softening is gen-
erally observed with deformation, up to a certain level of straining, beyond which the material stiff-
ens. The level of strain attained is typically of the order of several hundred percent.

The hyperelastic material in MSC/NASTRAN is specified on the MATHP bulk data entry
and the fully nonlinear elements are activaied by the PLPLANE and PLSOLID property entries.

2. THEORY

2.1. Stress—Strain Relations

Let x and Xdenote the current and original positions, respectively, of a material point and
let
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be the deformation gradient, which fully describes the motion, including rigid body displacement
and rotation. A hyperelastic or Green—elastic material is one for which a potential exists for the
stresses in the form
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where U(C)is the elastic strain cnergy function, € = F7Fis the right Cauchy—Green tensor, mea-
suring net deformation, excluding rigid body displacement and rotation, and S 1is the symmetric
(sccond) Piola—Kirchhoff stress, which is energetically conjugate to the Green—Lagrange strain
E=(C-1)/2

The theory of materials endowed with a strain energy function, which is a potential for the
stresses, has been studied extensively and classical forms of this function due to Rivlin and Ogden
[5] existfor incompressible materials. The assumption of incompressibility is, generally speaking,
arcasonable one for rubber—like materials and has been used extensively as it considerably simpli-
fies analytical solutions. In numerical solutions, however, it becomes a major difficulty, and a lot
of research cffort has been expended in either imposing the incompressibility constraint or addres-
sing the problem of volumetric locking due to near—incompressibility. Extensions of the incom-
pressible strain energy functions to include the effect of compressibility at the nearly-incompress-
ible limit have been considered. To this end the decomposition
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is introduced, where J = det Fis a measure of volume change, J = dV/dV,,. This introduces
anew motion F, whichis volume preserving, since det F = J~'det F = 1, for which the incom-
pressible strain energy function may be written in terms of the corresponding right Cauchy—Green
tensor C = I_-'TIT'. In terms of these new variables the strain energy function becomes
U(C,J) = U(C), such that U(C, 1) = U(C). With the chain rule and standard results for the

derivatives 8J/3Cand dC/9C, the expression for the stress S follows. For the present formula-
tion in MSC/NASTRAN, however, the equations of motion will be written in the current

(deformed) configuration! and therefore the Cauchy (true) stress o = (1/J)FSF Tis the relevant
measure of stress, which is
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and dev denotes the deviator, dev(-) = (-) — (1/3)tr(-)1. For isotropic materials, the depen-
dence of the strain energy function on C is through its invariants only. Such invariants are the

eigenvalues /1, of Cor the invariants I,, I, defined below. Note that only two invariants are

needed since 1, = n /12 and I = det € = 1 due to the incompressibility ot the motion F.
The two classes of models are equivalent, since the invariants Iy, I, are symmetric functions of the
principal stretches 4. A particular form, separable in functions of 1, is due to Ogden [5]. The

1. Some authors call this a total updated formulation [2].



strain energy function employed in MSC/NASTRAN is of the generalized Rivlin type and is of
the form
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where A and D, are material constants associated respectively with distortional and dilatational
response The Cauchy stress is given by
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where the pressure p is
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is the left Cauchy—Green stretch tensor of the distortional deformation.

The model in MSC/NASTRAN assumes that distortional and volumetric deformations are
uncoupled. A curvefitting algorithm, based on least squares fitting, is available to determine the
material constants A i and D;, based on experimental data, up to the fifth order polynomial form.
The conslants D;, associated with volumetric deformation, may be obtained from experimental
data in pure volumetnc compression, whereas the material constants A ; ji* describing distortional

deformation, may be obtained from force—deformation data in the following experiments:

Simple tension/compression
Equibiaxial tension

Simple shear

Pure shear
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The model can have up to five constants D;and up to 20 constants A i In the limit of small strains,
it reduces to a linear elastic material with the bulk and shear moduli respectively given by

K = 2D,
G =2(A + Ay)’ (10)

A materially lincar clastic analysis with the constants defined above (possibly including geometric
nonlinearity) and a hyperelastic analysis of a small strain problem should give similar results. As
seen from equation (5), the bulk modulus acts as a penalty in imposing the near—incompressibility
conslraint.

2.2. Volumetric Locking Avoidance

Typically, for rubbers, the bulk modulus is several orders of magnitude higher than the shear
modulus. This introduces difficulties, which include ill-conditioning of the stiffness matrix, incor-
rect stresses, and ‘locking’ of the displacements [7]. As the nearly incompressible material
approaches full incompressibility, the bulk modulus becomes infinite and the volumetric strain
J — 1becomes zero, so that the constitutive equation p = aU/aJ predicts some finite but indefi-
nite value for the pressure. The pressure may no longer be obtained from the displacements. It
becomes an independent variable that may be calculated from the equilibrium equations and
boundary conditions. In that spirit, the pressure and/or volume ratio arc interpolated independently
from the displacements in so—called mixed formulations, in which the following augmented
energy functional is minimized to obtain the virtual work equation

SWMt + sWedt = 0
oWnt = IsTaEc/v0 = [UTVS(éu)dV (11)
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plus additional equations for the mixed variables 3, ;A):

Wy, J, p) = J [T, T, J) + W~ NV, + Wet(u) (12)
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where By and Bare the initial and current volume of the body, respectively, and V(S u) is the sym-
metric gradient of the virtual displacement with respect to current coordinates: The invariants
I, T, are functions of the displacements, while the volume ratio and the pressure are additional
independent variables. Full Gaussian integration is used in evaluating the element integrals.

Alternatively a displacement formulation may be used with reduced integration of the volu-
metric terms in the force vector and in the stiffness matrix, which are given by the following expres-
sions:
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In these, C®and K are distortional and volumetric constitutive tangents, respectively, S; and S,
are matrices containing Cauchy stresses and BY, BY, B, B} are transformation matrices:

Vu= B, , Vu= B4, , tVu= Blu, , devV°u = B%u,, (15)

where Vu = du/ox, VSu = Vu + (Vu)', U ; are the displacements at node /, and summation
isimplied on /. Reduced integration is essentially equivalent to the mixed formulation, if the order
of the pressure interpolation is the same as the number of integration (pressure) points for the volu-
metric terms [4].

Both formulations are available in MSC/NASTRAN fora 4-noded plane strain quadrilateral
and an 8-noded brick element. They behave essentially the same, however, the mixed formulation
may not converge as well as the selective reduced integration when combined with the BFGS
updates, il the volumetric constitutive relation is highly nonlinear. The elements are linear with
constant pressure interpolation or with single pointintegration of the volumetric terms. In the nota-
tion of Sussman and Bathe [7] they are 4/1 and 8/1 elements.

3. EXAMPLES

3.1 Estimation of Material Parameters

Experimental data for natural rubber, obtained by Treloar [§] in simple tension, equibiaxial
tension, and pure shear have been used to evaluate the material constants. A total of 20 experimen-
tal points was provided for estimation of the distoriional parameters A p for first, second, and third

order strain energy polynomial, with two, five, and nine material constants respectively. The two
parameter model corresponds to the Mooney—Rivlin strain energy function. The curve-fitting
algorithm in MSC/NASTRAN will fit the analytical closed—form solutions of the above test cases
to the experimental data provided. It is based on the method of singular value decomposition,
which provides a least squares solution even in the rank deficient case. Of all possible solutions
thisis the vector Aof coefficients A i possessing minimal length. A message will be issued to warn

the user that the parameters obtained are not unique. Rank deficiency may occur if an insufficient
number of experimental points is provided for a given order of strain energy polynomial. A non-
unique solution will always be obtained if the parameters are fitted [rom pure or simple shear
experiments only. For adequate representation of the material in multiaxial states of deformation,



itis recommended that at least an axial and a shear test be performed. Figure 2 shows MSC/NAS-
TRAN results with the parameters obtained from the curve—fitting algorithm. Asshownin the fig-
ure, exact agreement is found between the theoretical (used in parameter estimation) and the
numerical solution for the three states of stress considered.

3.2 Stretching of a Rubber Rectangular Bar

A plane strain rubber rectangular bar is partially constrained at one end and is stretched at
the opposite end. The free portion of the partially constrained end simulates the existence of a
crack. The material is assumed to be of the Neo-Hookean type (i.e. Mooney-Rivlin wilh
Agy = 0) with A, =100 psi and D; is set to 5 x 105psi to simulate the nearly incompressible
condition. The finite element model contains 182 finite deformation QUAD4 elements. The final
configuration of the bar is shown in Figure 3. The shape of the deformed mesh agrees with the
results reported in [6].

3.3 Rubber Bushing Problem

The cross sector of a rubber bushing is shown on Figure 4. Tt is assumed that the frame and
internal shaft are rigid and rubber is perfectly bonded to these components. A Mooney—Rivlin

material model is assumed with A,y = 0.177N/mm?, Ay = 0.045N/mm? and

D, = 333N/mm?. The goal of the analysis is to determine the force—displacement curve of the
unit. Considering symmetric conditions, only one-half of the rubber part was modeled with 72
[inite deformation QUAD4 elements. The grid points on the outer boundary were fully constrained
to simulate the rubber—frame interface. As for the grid points on the inner boundary, only the hori-
zontal degrees of freedom were constrained, while the vertical degrees of freedom were tied
together with MPC’s. Force was applied to the top grid point on the inner wall in the vertical direc-
tion. The same problem was also tested using a 3-D model, which contains 72 finite deformation
HEXAS elements. The force—displacement curve obtained agrees with that reported in [7] for the
same type elements. However, for a [orce Pgreater than approximately 200N this is an overly stiff
solution. As reported in [7], the actual response of the bushing is almost linear and is close to that
obtained from a linear solution, which predicts a stiffness K = 135G, where @ is the shear modu-
lus. There is no provision against shear locking in the finite deformation elements in version 67.5.
For this reason, the elements are not appropriate for problems with dominant bending type
deformation. Mesh refinement will help aleviate this problem. Due to severe mesh distortion, the
full Newton method (ITER, 1) became difficult to converge for values of P greater than 400N. The
force was successfully increased up to 800N when using the BFGS updates.

3.4 Lateral Compression of a Rubber Cylinder

Aninfinitely long rubber cylinder with a diameter of (.4m was pressed laterally between two
rigid plates. Due to symmetry, only the right lower quarter was modeled using 48 finite deforma-
tion QUAD4 plane strain elements. Material constants were set to Ay = 0.293MPa,
Ay = 0.177TMPaand D| = 705MPa. The contactregion was simulated both with gap elements



and with the new slideline contact capability of MSC/NASTRAN. A 3-D model using 48 finite
deformation HEXAS elements was also tested. The force—deformation curve obtained compares
well with that obtained in [7], which in turn compares with the analytical solution due to Lindley.
See [7] for a discussion of the Lindley and Hertz solutions.

4. CONCLUSIONS

The new fully nonlinear finite deformation elements in MSC/NASTRAN are capable of rep-
resenting large rotation as well as large elastic deformation up to several hundred percent strain.
The elements possess successful mechanisms for avoidance of volumetric locking and can there-
fore be used for the description of nearly incompressible rubber—like materials. Material response
is described by a generalized Rivlin model, capable of representing highly nonlinear behavior in
multiaxial states of deformation. A robustalgorithm is provided forestimation of material parame-
ters from experimental data. The elements are restricted to plane strain or three dimensional prob-
lems and are not recommended for use in situations where bending dominates.
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Figure 1. Total Lagrangian Formulation.
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Figure 2. Homogeneous Tests for Hyperelastic Materials:
Uniaxial Tension, Equibiaxial Tension, and Pure Shear.
F=force, A, = original area, ¢ = currentlength, £, = original length,
J = V/V, (current volume / original volume).
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Figure 3. Stretching of a Rubber Rectangular Bar.
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Figure 4. Rubber Bushing Problem.
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Figure 5. Lateral Compression of a Rubber Cylinder.
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