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ABSTRACT

This paper illustrates the nonlinear analytical and experimental study of a
shallow geodesic dome comprising thin walled circular hollow sections. A 156-
member shallow geodesic dome that has a rise to span ratio of 1:10 (ie. a rise of
0.6m to span of 6.0m) was constructed and tested experimentally. The present
investigation is focused to study the snap-through phenomena of the dome
subjected to a static load at the centre of the dome. The dome is discretized as
156 beam elements and its perimeter supports are assumed as ideal pin
supports. Displacement control of the load point was employed to trace snap-
through and this prevents any possible dynamic jump in the vicinity of the
snap-through region. Experimental observation shows that the members near
the loading point deformed severely under the applied load without resulting
in any damage to the welded joints, apart from material yielding in certain
members.

MSC/NASTRAN Version 67 installed on the BHP Research CRAY-YMP (EL)
SuperComputer was used as the numerical tool to validate the complex
nonlinear behaviour of the dome. The results of geometrical and material
nonlinear analysis of the dome from MSC/NASTRAN compare well with the
experimental results for cases where the displacements can be reasonably
measured with the linear transducers employed. A second nonlinear large
displacement analysis was carried out with MSC/NASTRAN-on a Schwedler
dome in which the connection details are based on the Harley Spaceframe
structures. The Schwedler dome considered has a rise-to-span ratio of 1:4 (ie., a
rise of 2.5 m to span of 10.0 m).



1.0 INTRODUCTION

In general, large displacement analysis of a structural system consisting of
many members is very complex due to the nature of the governing differential
equations. Nonlinear closed form solutions are not readily available for the
differential equations. However, there are some approximate methods
available to solve the nonlinear problems. Series solution was one of the
earliest approximate methods employed in the geometric nonlinear analysis.
Researchers in the past experienced limitations with this method due to the
application of complex loading and boundary conditions. To circumvent these
problems, numerical methods based on the finite difference method, the finite
element method and the boundary element method have been developed.
Among those methods, the finite element method was found to be the most
powerful technique to study the large displacement behaviour of structures.

Although the finite element method was firmly established and extensively
used in the late sixties, the geometric and material nonlinear analysis of spatial
structures has received considerable attention over the past decade. This may
be partly due to the usage of light weight materials and design, especially in the
field of optimal structural designs where the instability phenomenon may
become the critical design criterion. As ‘such, the evaluation of post critical
structural response has become inevitable. In structural design, the evaluation
of accurate ultimate loads of structures is an important task. In order to
determine the accurate ultimate load, both nonlinearities originating from
material and geometry must be incorporated in the analysis. The material
nonlinearity arises due to the nonlinear stress-strain relationship while the
geometric nonlinearity is a consequence of the changes of configuration during
the loading process. It is therefore of interest to examine their response under
limiting loads at which the structural capacity is exhausted.

In describing the motion of the element an updated Lagrangian description [1-
3] was employed in the present study. The analysis of geodesic dome structures
in the post-buckling range by means of the finite element method inevitably
involves the solution of large systems of nonlinear equations. The most
satisfactory way of solving such problems is to combine the arc length method
(Riks and Crisfield) within each increment with the Newton-Raphson method
(NR method) as the iteration strategy.



In practice, light weight dome structures have been preferred by designers to
cover large span areas such as sports stadium, exhibition and assembly halls,
swimming pools, shopping arcades and industrial buildings since the need of
intermediate supports is minimal. The shallow geodesic dome structures
subjected to external loads often reveal various types of instability phenomena
such as the snap-through buckling and the buckling of the bifurcation type
(refer Fig. 2.1).

2.0 USEFUL FEATURES OF MSC/NASTRAN

MSC/NASTRAN nonlinear capabilities are well documented in MSC's
Handbook for Nonlinear Analysis [4]. The special features of nonlinear finite
element analysis are highlighted in the above document. The success of the
nonlinear analysis is heavily dependent on the numerical algorithm
employed in obtaining the solution. A collection of nonlinear finite element
solution strategies which are incorporated in MSC/NASTRAN (Version 65, 66
and 67) are briefly summarised in Ref. [4]. It appears that most of the existing
numerical techniques are not adequate to ensure convergence, stability and
efficiency if overall structural response is to be traced. The conventional
Newton-Raphson iteration method which employs load control has often
failed in the vicinity of critical points.

This method alone is not efficient enough to handle the snap-through
problem. Also, it requires an increasing number of iterations when the
stiffness matrix approaches singularity and in many instances the final
solution may even diverge.

Researchers in the past proposed various numerical strategies to overcome
these problems and to trace the load deflection path well beyond the critical
point. Some of the numerical methods are (i) the pure incremental method,
(ii) the artificial spring method, (iii) the displacement control method, (iv) the
constant work method , and (v) the arc length method. The displacement
control method in which the iterations are performed at a constant
displacement for a particular degree of freedom is robust enough to handle
simple snap-through problems. However, it is not sufficiently stable to trace
those load deflection curves with snap-back characteristics. The arc length
method has been found to be more suitable to trace both snap-through and
snap-back phenomena.



The accuracy and overall efficiency of nonlinear finite element analysis solely
depends on the selection of the convergence test. In an iterative process, the
out-of-balance forces and the changes in displacement should vanish when
solution converges to a stable equilibrium. The iterative process is terminated
once the convergence test is passed. The convergence test and the related
problems are well documented in Ref. [4].

3.0 CRISFIELD'S CONSTANT ARC LENGTH SOLUTION METHOD

The conventional Newton-Raphson method alone is not capable enough to
trace the nonlinear response of a dome structure beyond the critical limit
point. In general, the post-buckling behaviour of structures are not allowed for
in the design process. However, the prediction of post-buckling behaviour of
dome structures becomes desirable to trace the snap-through buckling. Even
though, the arc length method is not a particularly efficient solution
technique, it is an effective solution strategy in the vicinity of limit points.

The constraint equation described in Refs. [5,6] which couples all the
displacements and external incremental loads through fixing the length of the
increment as depicted in Fig. 3.1, i.e,

T

(Au) (Au) + AX2{AP) [AP) = A2 1)
where Al is the incremental arc-length.

The above constraint equation was originally added with the incremental
stiffness matrix. Unfortunately, the inclusion of an additional constraint
equation destroys the symmetry and bandedness of the stiffness matrix. The
constraint equation was reformulated by Crisfield [7] for the purpose of
numerical analysis and its superiority has been numerically proven by many
researchers.

The modified constraint equation is as follows:

{Au}T{Au}=A12. (2)



This implies that the magnitude of the displacement vector is constrained. At
the first load increment, a unit loading parameter or load factor (i.e., AN = 1)
is chosen as the scalar multiplier of an arbitrary external load and the
incremental displacement is determined by the following equation:

(Aufy =[k]7 AAUNP). (3)

Hence, the prescribed generalised arc length

Al=V{auMyauMy. (4)

The sign of incremental load factor is determined by the sign change of
the incremental work done, AW, where

AW = {(AuYT(PY . )

If the sign of AW has changed from that of the previous increment, the sign of
AMD is reversed from that of its previous value.

At the i-th iteration, after the initial increment,

(aul) =(K]7H(P)

(6)
and
{aul) = [k]“l{R(i—l)} :
0
where {RG-D}is the residual force at the end of the (i-1)-th iteration.
The iterative displacement {Au ©) is,
{AuDy = AA DAY + (auy .
(8)
The incremental displacement up to the i-th iteration {du ®} is given by,
Yy (i~ , i
{8uy = (3u¥" 1} + (Auty . ©)
According to Eqn. (4),
{(8u™MTsuy = A%,
} (10)



Substituting Eqns. (8) and (9) into Eqn. (10) results in,
a(AAY? = bAADY + =0, 1n
where,

a={(au{) (8"}
b=2[{oub" VY + (Ax}(Auly

= [{8ufV) + (Au)[{8u V) + (Au)) - AL

The real roots are possible if and only if
b — 4ac=0. (12)

Selection of appropriate root was suggested by Crisfield [7]) to avoid doubling
back on the solution path. This will be such that the angle between the
previous incremental displacement {u (i-D} and the present incremental
displacement (du ()} should be positive. If both choices of AAM result in
positive values, then the appropriate root is the one nearest to the linear
solution,

A D = —¢/b . (13)

4.0 EXAMPLES
4.1 A Shallow Geodesic Dome

A shallow geodesic dome, 1:10 rise-to-span ratio, shown in Fig. 4.1 has been
selected to study the snap-through buckling behaviour. In the present analysis,
the dome is discretized as 156 beam elements (see Fig. 4.2) and its perimeter
supports are assumed as ideal pin supports. Displacement control of the load
point was employed to trace snap-through and this prevents any possible
dynamic jump in the vicinity of the snap-through region. All the members
were welded to form the overall configuration of the dome.

The external load was applied at the centre of the dome (see Fig. 4.2, Node 1)
and the displacement was controlled by means of the Instron Mini Controller.



Measurements for nodal displacements and rotations were recorded at selected
joints. The analytical and experimental results for vertical displacements at
nodes 1, 2 and 14 (see Fig. 4.2) and rotation at node 58 are shown in Figs. 4.3 -
4.7. It appears from Fig. 4.3 that the experimental results are in reasonable
agreement with the numerical results from MSC/NASTRAN in the snap-
through region. It is interesting to note that the results obtained from
MSC/NASTRAN were slightly lower than the experimental results.

The experimental load displacement curve for node 2 (see Fig. 4.4) is not in
particularly good agreement with the numerical results. However, the same
trends are observed in both the numerical and experimental curves. One
should notice that the displacement of the node is relatively small and it is
recognized that the accuracy of the linear transducers used to measure the
vertical displacements is not good in this range. Similar problems with small
displacements are highlighted for node 14 as shown in Fig. 4.5. The support
rotation at node 58 (see Fig. 4.2) is depicted in Fig. 4.6. In this case, numerical
and experimental results do not correlate well with each other. However, it is
interesting to note in each of these plots how the support rotations are
correlated with snap-through behaviour of the dome.

A partial listing of the case control and the bulk data of MSC/NASTRAN
input data for this example is shown below:

SUBCASE 1
LOAD
SPC
NLPARM

BEGIN BULK

PARAM, K6ROT, 100000.

PARAM, LGDISP, 1

NLPARM, 2671,60, AUTO,,,PW, YES

NLPCI, 2671,,1.0,1.0,,,20,250

PARAM POST 0

$

FORCE 11 0 3000. -1

$

MATI1 1 1999060. 27 7.85-6 1.17-5

MATS1,1,, PLASTIC,1326.3,,,235.

$

ENDDATA

1
1
2671

4.2 A Schwedler Dome

The Schwedler dome that has a rise-to-span ratio of 1:4 (i.e., a rise of 2.5 m to
span of 10.0 m) is selected to study the post-buckling behaviour and hence to
propose an testing program for Harley Systems. The geometry and the plan
view of this dome is shown in Figures 4.7 and 4.8, respectively.



In the Finite Element discretization of the dome, all the radial members and
first and third ring members are considered as beam elements and the others
are considered as rod elements. A static asymmetric load is applied at node 4
to trace the snap-through behaviour using MSC/NASTRAN Version 67 on
the BHP Research CRAY-YMP (EL) Supercomputer.

The numerical results from both linear and nonlinear analyses are plotted
together for direct comparison. Load displacement curves for nodes 1, 2, 4, 6, 8
and 10 (see Fig. 4.8) are depicted in Figures 4.9 - 4.14, respectively. Also, the
support rotations at nodes 12, 18, 28 and 39 are shown in Figures 4.15 - 4.18.
Axial loads for selected members are also illustrated in Figures 4.19 - 4.26. It is
interesting to note from all these results that how the nonlinear analysis
results differ from linear analysis results.

5.0 CONCLUSION

The present work describes the loading characteristics of a shallow geodesic
dome and a Schwedler dome manufactured from mild steel circular and
square hollow tubes. The nonlinear analytical results of the geodesic dome
using MSC/NASTRAN compares well with the experimental results within
the snap-through range for nodes at which the displacements can be
reasonably measured. Experimental observation of the geodesic dome showed
that the members near the loading point deformed severely under the applied
load without resulting any damage to the welded joints, apart from material
yielding in certain members.

The load displacement characteristics of the Schwedler dome by incorporating
both geometric and material nonlinearity is presented. The results of linear
analysis of the dome show a considerable difference with the large
displacement analysis in which the material nonlinearity is considered. The
arc length method available is MSC/NASTRAN Version 67, was found to be
an excellent numerical tool to trace the load displacement path of single layer
domes which are prone to snap-through buckling.
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Fig. 4.8 Plan View of the Schwendler Dome
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