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ABSTRACT

This paper is intended to investigate the accuracy of
MSC/NASTRAN's Solution 105 for use in calculating linear elastic
(Euler) buckling modes.

Column buckling, panel buckling, and stiffened panel
buckling is analyzed using Euler equations and Solution 105.
Comparisons and modeling recommendations are made for each type of
structure,.

Solution 105 provides excellent results for Euler type
buckling. Panel buckling requires the use of an adequate number of
elements. A convergence plot shows that four QUAD4 elements per
half sine wave are necessary for accurate results.

The opinions expressed herein are those of the author and do
not necessarily reflect those of Newport News Shipbuilding and Dry
Dock Company.



Euler Buckling

Introduction

The Euler buckling load is the load for which an ideal
structure will first become unstable and buckle if slightly
perturbed from its equilibrium position.

Due to eccentricity of the column and load, inelastic action,
and residual stresses, the ultimate load will be less than the
Euler buckling load.

Generally, the ultimate load is the load of concern, but the
Euler buckling load is helpful information. The linear elastic
buckling load is easily calculated and can give an idea of the type
and pattern of ultimate failure.

This paper will compare solution 105 (linear elastic buckling)
to the Euler buckling equations for different types of structures.
Element type and mesh density will be determined for best results.



BEAM BUCKLING

Basic Theory

The maximum load that a column can carry depends on many
factors. Eccentricity of the column and load, inelastic action,
residual stress, and other factors affect the maximum load. The
Euler buckling load is an ideal load which only accounts for a
guided load and various end restraints.

The Euler buckling load (Reference (a))
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is the load for which this ideal column will first have a buckled
mode shape. It is the eigenvalue in the solution to Euler's
differential equation

d2X+£_"£=o, (2)
dy? EI

Bifurcation Buckling by the Eigenvalue Method

The equilibrium equation

F=(K+K) A, (3)

where K; is the geometric stiffness matrix, can be expressed in
incremental form. For an increment of load F; and a corresponding
increment of deflection, equation (3) is still wvalid if K; is
evaluated for the structure's current state.

The critical condition is a condition where there can be a

non-zero deflection with no increase in load, setting F, = 0,
equation (3) is now

(K+K) A;=0. (4)



Since the deflection increment is defined as non-zero the
mathematical criteria for buckling is

det (K+K,) =0. (5)

The load vector can be defined as a scalar multiple of a
representative (applied) load.

If F, = the applied load then,

F=AF, , Kg=MK

Using this in equation (4) gives,

(K+AK; ) A=0. (6)

The critical buckling load is the lowest eigenvalue of
equation (6) times the applied load,

F, =l F,. (7)

The following pages show the solution for the beam in Figure
1, page 5, using the eigenvalue method (6), Euler's equation (1),
and MSC/NASTRAN Solution 105.

Euler's equation gives a lambda of 10.28 and the other two
solutions yield 10.36. As was expected, Solution 105 gives
excellent Euler buckling results for beam elements.



BUCKLING SOLUTION BEAM ELEMENT
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THE GEOMETRIC STIFFNESS MATRIX IS
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MSC/NASTRAN Solution 105 Input Deck

SOL 105
TIME S

CEND

SUBCASE 1

SsPC=1

LOAD=1

DISP=ALL

SUBCASE 2

METHOD=10

SPC=1

LOAD=1

DISP (PLOT)=ALL

BEGIN BULK
GRID,1,0,0.,0.,0.
GRID,2,0,0.,120.,0.
CBAR,1,1,1,2,1.
MAT1,1,30.E6, ,.3
PBAR,1,1,5.,20.,20.,1.
FORCE,1,2,0,-10000.,0.,1.,0.
SPC,1,1,123456

SPC, 1,2, 345
EIGRL,10,0.,150.,2
ENDDATA

Solution

4,=10.358

A

Results are the same as before.

static™ *
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A,=134.09



PANEL BUCKLING

The Euler type buckling formula for a éimply supported plate
under uniform uniaxial load is, (Reference (b)),

_ .- T2D
cr—szt (8)
where,
Ee3 mb  a
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for n=1, where m,n define the mode's shape (number of waves each
direction).

K=4.0 is the lowest possible mode for a rectangular simply
supported plate.

The following page shows the Euler solution and Solution 105
results for the panel in Figure 2, page 7.

Given that plate elements are not exact formulations, a
certain mesh refinement is required for an acceptable solution.
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Figure 3 shows the convergence rate of both the QUAD4 and
QUADR element. Based on Figure 3 it is concluded that four QUAD4
elements are adequate to model the half sine wave of the buckled
mode shape. The QUAD4 and the theoretical curves in Figure 3 appear
to converge at four to six elements. If the QUADR element is used
for buckling, twice as many elements appear to be necessary.1

Figure 3 shows convergence from the low side for this problem.
Experience has shown that for more complex models, convergence is
from the high end. Eigenvalues 7 to 8 times higher than expected
have been seen when there are less than four elements on the half
sine wave.

Poor mesh density is easily seen from plotting the mode
shapes. The mode shapes will appear to be jagged or pointed.? 1In
summary, an adequate amount of elements provide excellent results
for Euler buckling.

IMuch worse results have been seen when using the QUADR
element in complex models. Hence, the QUADR is not recommended for
buckling.

’Sometimes referred to as mountain peaks since the panels
deform to a sharp point instead of smooth curves.
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Linear Elastic Panel Buckling
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STIFFENED PANEL BUCKLING

Stiffened panels can buckle in two ways, overall buckling and
local buckling. 1In overall buckling the stiffeners buckle along
with the plating and in local buckling the panels buckle first.

Figure 4 shows a stiffened panel under an in-plane load. Panel

buckling is analyzed by assuming each panel is simply supported and
equation (8) is used. Overall buckling is analyzed by assuming an
effective width of plate acts with the beam forming a column.
The width of plate that acts with the beam is based on shear lag.
Load is carried by the plate and stiffeners. In overall buckling
a portion of the plate will act with the stiffener by a transfer of
shear. The further from the stiffener the plate is the less
effective it is due to shear lag. The effective width used in the
hand calculations is

_ E
b,=2.0t,| =

gy

where;

b =effective width of plate
t,=plate thickness

E=Modulus of Elasticity
oy=Yield stress

Equation (1) is used to evaluate the overall (columns buckling)
strength.
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Local Buckling (Panel)

Equation (8) yields a panel buckling eigenvalue of 1.0. Figure 5
shows the solution 105 results for the stiffened panel. Even
though there are 6 elements per sine wave in the athwartship
direction there are only two in the longitudinal direction. Also,
equation (8) is for simply supported panels and the stiffeners
provide some rotational restraint. For a fixed boundary the
theoretical solution is 1.6. The bounds of the theoretical
solution are 1.0 and 1.6. An FEA model result of 1.008 including
the rotational restraint of the stiffeners appears to be an
acceptable answer. The stiffeners provide 1little rotational
support and the panels buckle as if they are simply supported.

Overall Buckling (Column)

Figure 6 shows the MSC/NASTRAN result for overall buckling to
be 5.042. This is 0.04% higher than the theoretical solution given
by equation (1). Figure 6 shows the first mode that involves the
stiffener and is considered the overall buckling condition
predicted using the effective width of plate. It appears that if
enough elements are used the QUAD4 can model the shear lag effect.
Hence, building a separate of just the beam and the effective width
of plate should yield the same result. Although, with the entire
model it may be difficult to find the first overall mode. A
separate model of just the effective column would yield the overall
buckling mode in one eigenvalue.

The above results show that solution 105 compares very well to

Euler's buckling equations when appropriate element density is
used.
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STIFFENED PANEL BUCKLING

FIGURE 6
LOWEST STIFFENER MODE SHAPE
EIGENVALUE = 5.042
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Conclusions

The results of this paper show that solution 105 yields
excellent results for linear elastic buckling.

Beam elements appear to give exact results except when mixed
with plate elements and an effective width of plate acts as a
flange. 1In this case, four elements along the half sine wave in
the primary direction provides accurate results for overall
buckling of the plate and stiffeners.

Panel buckling can be accurately predicted using QUAD4 elements
with at least four elements per half sine wave of the mode shape.
The number of elements in the secondary direction seems to be less
important. The quality of the mode shape is a good indication of
accuracy. Jagged deformed plots are questionable, smooth curves
along the sine waves are preferable.

The QUADR element should not be used for buckling. In this
report the QUADR is converging much slower than the QUAD4, and
other analyses, not documented in this report, have yielded poor
results.

Reviewer Comments

The bar element model will converge from 10.358 to 10.282, if
the mesh is increased to 3 elements. The theoretical wvalue is
10.281.

The QUADR element should not be used for buckling for the
following reasons:

1) It does not have a geometric stiffness matrix.
2) Consistent loads, as opposed to point loads, are required.

In other words, equivalent end moments in addition to
forces need to be included.
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