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Abstract

Prediction of aircraft cabin noise relies on accurate frequency response
analyses of engine, strut, nacelle, and wing components. Tuning the finite
element model to accurately reflect the dynamic characteristics of the
actual component hardware is an important part of this process. This paper
discusses the development of a DMAP procedure for implementing Prof.
David Ewins’ approach to frequency response function (FRF) tuning in
MSC/NASTRAN Version 67. Results are presented for simple test models
which reveal some of the capabilities and limitations of the procedure.
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Nomenclature

F harmonic force vector

u harmonic displacement vector

M,B,HK mass, viscous damping, structural damping, stiffness matrices
CA compliance matrix - MSC/NASTRAN

CcT compliance matrix - Test

ZA dynamic stiffness matrix - MSC/NASTRAN

VA dynamic stiffness matrix - Test

AC compliance error

AZ dynamic stiffness error

R matrix relating compliance error and model error

)4} model parameter error vector

Spmi mass sensitivity matrix for i-th parameter

Sgi viscous damping sensitivity matrix for i-th parameter

Sui structural damping sensitivity matrix for i-th parameter
Ski stiffness sensitivity matrix for i-th parameter

j J-1

0] frequency

g number of degrees of freedom (dof) in the analysis model
! number of test drive points

t number of test measurement points

r number of analysis dof without corresponding test dof; g - ¢
s number of parameters used to tune the analysis model

Introduction

Approximately two years ago, The Boeing Company initiated research into methods to
tune large MSC/NASTRAN finite element models of engine, struts and wings of commer-
cial aircraft for the purpose of vibration and noise analysis. The problem is characterized
by high frequency bandwidth (20-100 Hz) and high modal density, for which traditional
modal analysis, test correlation, and update procedures have not always proven suitable.
Finite element models (FEM) often did not satisfactorily match dynamic test data. Before
these models can be used with confidence they must be correlated and tuned to match
available test data.

In recent years, tuning of FEMs has been the subject of considerable research. A good
review article on alterative procedures has been prepared by Imregun and Visser [6]. For
dynamic models, these procedures fall into two broad categories: 1) those based on corre-
lating and updating to match modal parameters such as frequency, mode shape, modal
assurance criteria, etc., and 2) those based on correlating and updating to match frequency
response functions (FRF) directly. In the first category, for example, are the procedures
implemented in MSC/NASTRAN Version 66 by Blakely [1, 2, 3] and the MSC/NAS-
TRAN sensitivity-based procedures of Flanigan [5]. In the second category are FRF-based
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methods of Lin and Ewins [7], Miura and Chargin [11] and Conti and Donley [4].

Following technical interchange with Prof. David Ewins (Imperial College, UK) and Mr.
Mladen Chargin and Dr. Hiuro Miura (NASA-Ames), it was decided that FRF-based pro-
cedures such as the Ewins method held the most promise of meeting our objectives. The
advantages included bypassing the extraction of modal parameters from test data, direct
use of the FRF’s which preserve dynamic data outside the immediate frequency range of
interest, and a robust solution algorithm for solving for model errors by a statistical (least
squares) procedure.

In this paper our goal is to outline the Ewins’ FRF tuning method and show how it was
implemented in MSC/NASTRAN Version 67. To date our efforts have been limited to
small finite element models with synthesized ‘analytic’ test errors, and limited application
to real test data. Boeing’s ultimate goal is to demonstrate the method on larger, more real-
istic structural models using test FRF data. We realize, of course, that formalized model
tuning methods, including Ewins’ FRF method, are in their infancy. If the FEM has major
problems, e.g., missing elements, improper connectivities, or inadequate meshes, then
automated tuning procedures are likely to fail. The MSC/NASTRAN FRF tuning method
we have implemented is appropriate to tuning a FEM which is a ‘reasonable’ representa-
tion of the actual structure, by selective parameter adjustments of elemental mass, damp-
ing, and stiffness properties.

Mathematical Formulation

The mathematical basis is presented in detail by Ewins and his colleagues in References
[7,12]. The derivation summarized in this section adopts a somewhat different nomencla-
ture, more compatible with Boeing conventions and our MSC/NASTRAN implementa-
tion.

Starting with a global (g-size) finite element model and using direct frequency response,
the following steady-state matrix equations result,
[- w*M +joB + jH+K] {u} = {F}
or in terms of the g-size dynamic stiffness matrix [Z)],
(2] {u} = {F}
where,
[Z] = -’ [M] +jo[B] +j[H] + [K]

For specified harmonic forcing functions {F}, one solves for the harmonic displacements
{u} at a specified number of frequency points, ®;, by inverting [Z] or forward/backward
substitution, -

{u} = [Z]"Y{F} = [C] {F}
where [C] is the dynamic compliance (also called receptance) matrix. The [C] matrix for
the analytic finite element model can be computed by specifying unit applied harmonic
loads, one at a time, and using the direct frequency response solution, SOL 108, for as
many frequency points as desired. To distinguish the resulting analytic compliance matrix
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from the measured test compliance, we hereafter denote it [CA].

Suppose that one also has performed a harmonic shake test or impulse test on the real
structure and has available test FRF data in the form of test compliance matrices [CT). It is
usually impractical to measure all coordinates (degrees of freedom) associated with the
finite element model so that [CT] is incomplete (not g-size). This incompleteness of the
test compliance complicates the procedure, but ways have been found to approximate the
(missing) test response functions as shown later. The task now becomes one of adjusting
the finite element model parameters such that the analytic compliances [CA] match the test
compliances [CT].

Ewins’ FRF tuning algorithm can be derived starting with the simple identity

[CT] [ZT] = [/]

Replacing the unknown test dynamic stiffness [ZT] by the analysis dynamic stiffness [ZA]
plus an unknown dynamic stiffness error [AZ] we get

ICT] [ZA + AZ] = []]

Post-multiplying both sides by [CA], taking the transpose, rearranging terms, and taking
advantage of symmetry,

[CA-CT] = [CA] [AZ] [CT] (EQ1D

EQ (1) is the basis of the Ewins algorithm, where the difference in the analysis and test
compliances, which are known, can be expressed in terms of the product of analytic and
test compliances and an unknown model dynamic stiffness error. Other than the assump-
tion that the matrices are g-size, EQ (1) is exact and contains no other approximations or
assumptions. Note also that EQ (1) is valid for each column of [CT], considered one at a
time.

The next step in the derivation is to expand the dynamic stiffness error in terms of mass,
stiffness and damping matrix errors,

[AZ] = —@?[AM] +j® [AB] +j[AH] + [AK] (EQ2)

Substituting back into EQ (1) and taking the i-th column of the test compliance matrix for
which there are a total of  columns,

{CA,~CT;} = [CA] [- @*AM +j0AB + jAH + AK] {CT;} (EQ 3)

Note that in EQ (3) that the row dimension of {C7;} must be g-size, but we probably don’t
have measured test compliances at all these degrees of freedom. We are forced to make an
approximation for the missing measurements and pursue an iterative strategy. One
approach is simply to use rows of the analytic compliances, {CA;}, for test compliances
that are missing. Another is to expand the measured test compliances to unmeasured loca-
tions using a form of inverse Guyan reduction.

To take advantage of the sensitivity capability in MSC/NASTRAN we next expand the
mass, damping and stiffness errors in terms of sensitivity matrices with respect to s
unknown parameters {p},
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[AM] = [Synlpy+ (Sl Pyt .o+ [Sy,l P,
[AB} = [Sp1pi+ [Spolpy+ ...+ [Sp P,
[AH] = [Sylpi+ [Syadpp+.. + [Sy.lp,

[AK] = [SKl]p1+ [SK2]p2+"'+ [sKs]ps

Substituting the above into EQ (3) and collecting terms produces the following set of
equations,

{CA;(0) =CT; (@) } = {AC;} = [R(0)]{p} (EQ4)

In implementing the method, rows of EQ (4) not corresponding to actual test coordinates
are ignored, since the calculated errors at non-test locations would either be approxima-
tions or zero, depending on the method used to expand the test data.

EQ (4) must be solved iteratively because an approximation was introduced in forming
R (m) . The question now arises whether, at each iteration, R (®) is of sufficient rank to
solve for {p]}. Recall that EQ (4) was derived using one column of the test compliance
matrix {CT;} at some frequency, . As necessary, the set of equations (row size) in EQ (4)
can be expanded by selecting sufficient number of columns of the test compliance matrix
and sufficient number of frequency points, resulting in an over- determined system of
equations, such that the rank of R () is sufficient to find the unknown parameters. EQ
(4) can then be used to solve iteratively for {p} by several algorithms such as QR or SVD.

MSCINASTRAN Implementation

Figure 1 is a schematic illustrating the FRF tuning procedure implemented in MSC/NAS-
TRAN Version 67. The procedure begins with a standard SOL 108 direct frequency
response analysis in which compliances are generated for each frequency to be included in
the calculation of the matrix R. This analysis has a unit loadcase for each test response
degree of freedom. The full g-size compliance matrix is not required for the calculation of
R or AC, since only rows in EQ(4) corresponding to test response points are considered.
With unit loads, CA in Figure 1 is the same as UP in SOL 108.

After the data recovery step (SUPER3) in SOL 108, custom subDMAP FRFT is called to
calculate the parameter error vector {p}. The test compliances in external order, CTE are
read via INPUTT4. Two matrices present in the bulk data are required to insure that the
test and analysis data are compatible. RMAT, which associates rows in CTE with rows in
CA, is input via DMIG cards. It has one column for each test coordinate, each containing
unity in the row position of the corresponding analysis degree of freedom. When CTE is
pre-multiplied by RMAT, the rows are re-ordered and the matrix is expanded to g-size,
with zeros in the non-test locations. )

CMAT is input via DMI entries, and has one column for each analysis frequency and one
row for each test frequency. It contains values of unity at locations which associate corre-
sponding test and analysis frequencies that are to be included in the error vector calcula-
tions. Post-multiplying CTE by CMAT selects the desired colmns and reorders them to be
compatible with CA.
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2. Read CTE
Test compliances
INPUTT4
[1\. Ci)m_pute CAl‘ »{ 3. Reorder CTE,
nalysis compliances
SOL 108 Select columns of CA, CT
Expand CT to g-size
4. Calculate K,.M,B | 5. Calculate R, DELTAC
derivatives, MSC/ Append for each selected
NASTRAN Sensitivity CT column
subDMAP DELTAK
l subDMAP FRFT

6. Solve for DELTAP
SVD, Least Squares
subDMAP ESOLVE

Figure 1 FRF Tuning Procedure

The resulting matrix, C7, contains zeros for all the non-test degrees of freedom, and must
be updated to include estimates of test results at these locations. At the user’s discretion,
values of CA are used, or estimates are calculated using a form of inverse Guyan reduc-
tion. In the latter case, a transformation matrix G is found by solving

[CA L IG,) = [CTy]

for G where the subscript ¢ refers to the set of test response points, and / refers to the test
drive points. CT,, is then

[CT,] = [CA,l [G,]
where r refers to the non-test locations.

subDMAP DELTAK is called by FRFT to generate the sensitivities required to form [R] in
EQ (4). This procedure takes advantage of the MSC/NASTRAN sensitivity calculation
capability. The ‘old’ capability, using DVAR, DVSET, etc. is used because of its ability to
calculate sensitivities with respect to material properties. This is to insure that the sensitiv-
ities can be made linear with respect to the parameters {p}, as required for Ewins’ method.
Note that for Ewins’ formulation, the sensitivities Sy;, for example, would be 0K/0dp;. In
order to get the module DSVG1 to calculate these instead of response sensitivities, a unit
vector is supplied in place of a displacement vector, U,,.
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With the sensitivities calculated and CT modified to include only the desired columns,
each non-null column of CT is processed by FRFT, which generates rows of R (columns of
RT) and AC. Once computed, R and AC are passed to subDMAP ESOLVE, where the real
and imaginary parts of the coefficients are separated. The imaginary parts are then added

as additional equations, in effect doubling the number of real equations to be solved via
SVD.

Currently, a SVD solution algorithm has been implemented via DMAP in subDMAP
ESOLVE. A future version will involve user written modules for more efficient SVD cal-
culations and an automatic iteration scheme.

FRF Tuning Numerical Examples

Prismatic Bar - Synthetic Test Error

In order to check out the FRF-tuning procedure in MSC/NASTRAN, a simple test case of
a 25-node prismatic free-free bar was considered (Figure 2). The analysis model had uni-
form mass and stiffness properties; the ‘test’ model included the mass and stiffness varia-
tions shown in Figure 2. The test compliances were assumed to be available at 9
measurement locations along the bar. A comparison of typical analysis and test compli-
ances are shown in Figure 3.

Density and Young’s Modulus variations (p and E) for each of the 24 elements were con-
sidered to be parameters (a total of 48). The use of 9 compliance measurements (transla-
tions) at 6 equally-spaced frequency points was sufficient to achieve an R matrix rank of
48. The MSC/NATRAN tuning procedure successfully identified the model errors in
approximately 14 iterations. Figure 4 shows the errors in density and elastic modulus at

Y

X
error (-10%)

p error (+33%)

p error (+50%)

p error (-40%)

@ - Accelerometer Location

Figure 2 Prismatic Beam Model



Boeing Computer Services

log amplitude vs frequency

Aénalysis

..................................... T T

log amplitude

-6, 100 200 300 400 500

frequency Hz

600
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the end of the first and fourteenth iterations. These are the differences between the initial
parameter values and those at the end of the iteration. It is interesting that the analysis and
test compliances were sampled at only 6 frequency points, none near resonances, but there
was sufficient dynamic information captured to identify the unknown model errors.
Increasing the number of sampled frequencies by as much as an order of magnitude did
not greatly improve the convergence of the solution.

Further convergence studies were conducted on the effects of the magnitude of the model
error, number of sensor locations, number of discrete frequencies, and proximity of mea-
surement location to the model error. What is emerging from these studies is that there
exist certain convergence criteria for obtaining a solution. For example, the number of test
measurements required for convergence appears to depend on the magnitude of model
error, proximity of measurement location to the model error, and number of frequency
points selected. More formal definition of convergence criteria is the subject of ongoing
research.

Prismatic Bar - Actual Test Data

Using synthetic test data to verify the FRF tuning procedure has the advantage of being
convenient and inexpensive, and much can be learned from doing so. Using actual test
data however, poses some additional challenges. For example, often it is not known if the
FEM is capable of representing the FRF behavior faithfully, if the critical parameters have
been selected for tuning, or even if the appropriate parameters have been included in the
model. In addition, possible errors and noise in the test data must be dealt with. To address
some of these issues, the same prismatic bar described above was considered with actual
test data.

The test bar had 9 accelerometers as described above, and was subjected to an impulse
load at one end. During the test, the bar was suspended on two soft foam pads, five inches
from each end. FRF data from 0 Hz to 3200 Hz was collected.

Initially the bar was assumed to have uniform properties, and only the density, elastic
modulus, and structural damping coefficient were allowed to vary during the tuning pro-
cess. Using 24 frequencies for the tuning procedure more than sufficient to produce an R
matrix of rank 3. However, the solution failed to converge. It is suspected that the test pro-
cedure for such a lightly damped structure introduces enough phase error to cause numeri-
cal problems when structural damping parameters are included. In addition, since
structural damping and stiffness are not independent, care must be taken to use an appro-
priate parameter update scheme when including them simultaneously.

Figure 5 shows the iteration history with no damping. When only two parameters (elastic
modulus and density) were considered, the procedure essentially converged in just two
iterations. The large magnitude of the parameter changes suggested a possible error in the
acquisition of the test FRF’s, which subsequently proved to be the case. The close match
between the test results and the converged analytical solution for the drive point location is
shown in Figure 6.
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Conclusions

The MSC/NASTRAN Version 67 procedure described herein shows promise for tuning
finite element models to match test FRF data. However, much work has yet to be done to
determine its suitability for use with complex structures encountered regularly in industry.
Questions remain regarding criteria for convergence and requirements for suitable test
data acquisition. These are subjects of ongoing research at The Boeing Company.
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