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ABSTRACT

Agreement between measured response of a structure and numerical predictions using an
initial finite element model (IF EM) is in general poor. An algorithm is developed, which
produces an updated finite element model (UFEM) that is fully correlated with respect to
modal measurements. An incremental nonlinear methodology based on large admissible
perturbations in cognate space is used to produce the UFEM by postprocessing the
- results of the initial finite element analysis (FEA) using MSC/NASTRAN. No additional
FEA requiring trial and error adjustment is required. The UFEM corresponds to a real
structure and may differ from the IFEM in response and correlation variables by 100
- 300 percent depending on correlation measures and structural size. Two numerical

applications for a structure are used to assess the strength, and limitations of the large
perturbation methodology.



Ihtroduction

Static and dynamic analysis of structures are usually performed by the Finite Element

Method (FEM). However, numerical prediction of static and dynamic responses of struc-
tures are often inaccurate due to simplifying assumptions, uncertainty, and ignorance.
The larger the manufacturing tolerances, the greater is the discrepancy between predicted
and measured response. This problem is of particular importance and difficulty in Finite
Element Analysis (FEA) of marine structures that have large manufacturing tolerances
and structural imperfections so that finite element modelling and numerical predictions -
of response is highly inaccurate.

Finite Element Model Correlation is the process of finding corrected values of the correla-
tion variables in the FE Model of a physical structure so that predictions by FEM match
the response of the corresponding physical structure. Two structural FE Models are
involved in this correlation problem : An Initial FE Model (IFEM) which fails to predict
accurately the response of the modeled structure, and an Updated FE Model (UF EM)
which must satisfy all measured response data. The response properties that have been
measured on the physical structure are called correlation measures. ‘Some properties of
elements or group of elements have to be changed to satisfy the correlation measures.
The element properties that are allowed to change are called correlation variables. In

Ppractice, an incomplete set of natural frequencies and mode shapes, and/or some static
deflections are measured.

Nonlinear perturbation techniques are the most successful in solving not only the model
- correlation problem, but many other two-state structural problems. Specifically, they are
‘capable of relating any two structural states that are modeled by the same FE model
but are described by different design parameters. Only one FEA is required, that of the
baseline structure even if the two structural states differ significantly(100-300 percent) in
design variables and response. The problems of redesign, model correlation, failure mode
identification, redundancy, and nondestructive testing can be addressed using nonlinear
perturbation techniques. Linear perturbation methods were first developed by Stetson
[1,2] for structural redesign, allowing for small differences in response, stiffness, and ge-
ometric properties between baseline and objective designs. Sandstrom and Anderson [3]
improved that method. Nonlinear perturbation methods were developed by Hoff, Bernit-
sas et al. [4,5,6], Bernitsas et al. [7], and Kim and Anderson [8], with the main objective
to improve the algorithm and make it applicable to large-scale structures and for larger
differences between baseline and objective structures. Kim and Bernitsas (9] introduced
static deflections as redesign objectives along with modal measurements. Bernitsas and
Kang [10] forced admissibility on structural perturbations to increase allowable differences
between the two structural states in numerical computations for redesign [1 1]. . Bernit-
sas and Tawekal [12] solved the model correlation problem by introducing cognate space

identification which reduces the modal basis for series expansion and the computational
time. '



The Finite Element model correlation procedure developed in this paper is illustrated
in the diagram shown in Figure 1. The developed perturbation method and solution _
algorithm have the following major features : :

o This algorithm should be used after all possible modifications of the FE model -
related to the manufacturing tolerances and structural imperfections - which do
not require trial and error have been made.

¢ Natural frequencies and mode shapes are measured and assumed to be exact.

s The set of measured modal properties may be incomplete.

¢ Differences 'Between_ IFEM and UFEM in response and structural properties up
to 100% to 300% are allowed depending on the scale of the structure and the
correlation measurements. : : ‘

¢ Both mass and stiffness matrices are updated.

* Properties allowed to change in the correlation process are fractional changes. Thus,
‘the updated matrices represent mass and stiffness matrices of a real structure.

¢ IFEM and UFEM differ significantly in the values of elemental stiffness and mass,
and in geometric properties. Nonetheless, the correlation problem is solved by
postprocessing results of only one FEA, that of IFEM. '

* A nonlinear perturbation algorithm is used which performs linear inadmissible pre-
dictions and nonlinear admissible corrections. Perturbations are defined as ad-
missible if they satisfy both stiffness and mass orthogonality, thus ensuring that
intermediate (incremental) modes correspond to the real structure calculated by
the algorithm at each increment. v ’

¢ No trial and error.

e At each increment the correlation problem is solved by minimizing the Euclidean
norm of the correlation variables, or the error in the constraints depending on
whether the problem is underdetermined or overdetermined, respectively. In gen-
eral, the former yields better results. :

.

o To reduce the number of constraints and make the problem underdetermined if
possible - for a given number of correlation variables — the number of orthogonality

constraints is reduced by identifying the space of modes cognate to the correlation
modal objectives (measurements).
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Problem Definitions

| The IFEM and UFEM are related through the following perfurbation relations :

] = [k +[AK [ )
'] = fm+ [Am !
[o] = [« ]+] aw) | 3)
W= +[ag) | e

where primed and unprimed quantities refer to the UFEM and IFEM respectively, the
prefix A indicates the total difference between an UFEM quantity and its IFEM counter-
part, [¢] = [{v}1, {9}, .. <»{¥}n], and [ w? ] is the diagonal matrix of the eigenvalues.

In order to ensure that UFEM represents a real structure, changes in the global stiffness .
- and mass matrices are expressed as the sum of changes in structural components [3,4,5]
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[Am] = Z (Am,] = z ] (6)

where p is the number of element properties or substructures that are allowed to change,
and a, is the fractional change in property e. Some o, 's may represent the fractional
change of only [k.] or [m,], and several o, 's may refer to the same element but different -

properties like bending, torsion, stretching, etc.

- The relation between energy balance equations of the IFEM and UFEM is
(K] = [M} [o"]

or



[K]+.[AK] = {[M]+ [AM]} {[”] + [Aw?]} M

where [K], [M], and [K'],[M’] are the generalized stiffness and mass matrices for IFEM
and UFEM respectively. ‘

Introducing perturbation relations (1) - (6) into (7) produces the following n? scalar
‘equations. Thesé are the general dynamic perturbation equations :

WYY — of @) I {e):)a
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S WY ke = — TR, (9)

éw}? md {(¥'}iae = — ()7 fm] {9}, ()

fori=12...n, j= i+ 10+ 2,...,n

Equation (8) represents the n diagonal terms in Eq. (7) for the UFEM, that is the
Rayleigh quotients for w!’. Eqs. (9) and (10) are equivalent to the orthogonality condi-
tions of the UFEM modes {1’} with respect to (k'] and [m']. Theoretically, orthogonality
of modes with respect to one of (K] or [m’] implies orthogonality with respect to the
other. Numerically, however, both conditions must be forced if {1} iy =12,...,n, are
to represent modes of a real structure. In the model correlation process, Egs. (8) - (10)
are used to impose modal measurements on the UFEM. It should be emphasized that
in general an incomplete set of measured modes and natural frequencies are available.
Further, modes measured may not be complete, i.e., deflections of a particular mode may
be measured while slopes may not. Consequently, the role of the modal dynamics general
perturbation Eqs. (8) - (10) is threefold : to force a measured -quantity on UFEM : to
‘make measured modes part of the orthogonal modal basis {¢'};, i = 1,2,...,n; and to
complete incompletely measured modes. :



Incremental Solution Algorithm

The objective of the correlation process is to compute [AK) and [Am], that is the stiffness
- and mass matrix perturbations to define UFEM. Correlation variables are selected as
fractional changes a,, e = 1,2,...,p, as defined by Egs. (5) and (6), where p properties
of elements or substructures are allowed to change. Such properties may be mass, bending
stiffness, torsional stiffness, etc., or geometric properties like linear dimensions of a beam
cross section [5], plate thickness [9], or a tube is internal and external diameters [7]-
Several elements may be linked together in one group to ensure that they remain identical
in the UFEM [9]. More than one property may be allowed to change in each element or
substructure. ;

Measured modal properties may be used as correlation measures (objectives) defined by
the following equations : : ! '

W =wf+Aw? = ¢u, 1=12,...,8, | (11)

B = drit+Adii = ch., o, of (ki) = S (12)

where the right-hand side represents the measured properties and S, S, are the number
- of measured frequencies and modal dofs. Measured properties are assumed to be exact. It
should be stressed again that in practice, the set of measured modes usually is incomplete
and measured mode shapes are incomplete as well. ’ '

~ The problem of finite elernent model correlation by perturbation can be defined now as
follows : Compute the values of correlation variables Qe, € = 1,2,...,p, subject to S,
natural frequency constraints (11) and S¢ modal node constraints (12)

~ An incremental perturbation algorithm which solves the model correlation problem and
handles successfully the aforementioned difficulties is developed in the foregoing discus-
sion. The strategy is illustrated didgrarmnatically in Figure 2.  The major aspects of the
algorithm are explained as follows :

(a) Modal objectives are achieved incrementally. That is, the S.c., 's and the
S¢cs,; ', are achieved in increments no larger than 7 percent.  Thus, incre-
mental correlation variables ja,, e = 1,2, ... , P, remain small in each increment
,1=1,2,...,N; where N indicates the total number of increments required
to achieve all correlation measures. Small values of @, 's are necessary in the
prediction phase as explained in the next paragraph. If an incremental dif-

ference is denoted by § — as opposed to a total difference indicated by A —
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(b)

then the incremental correlation problem will be defined by the incremental
counterparts of Egs. (8) - (10), (11) - (13) and

~-1< Iae_bs o, < o, +3 6?112a"-,p (13)

where j, = =- 015, 400 * =+ 0.15, and (1 +a,) = [V, (1 41 o).

In the prediction phase of the algorithm in each increment, inadmissible linear
perturbations are performed. This part of the algorithm is based on the small

- perturbation method developed by Stetson [1,2] and improved by Sandstrom -

and Anderson [3]. Incremental modal changes are expressed in terms of the
incremental matrix of admixture coefficients el, as [64] = [¢li[]?, where
1Gi = 0y¢i5,2,5 = 1,2,...,n, are small, and n, is the number of extracted
modes used in the algorithm. Applying that method to the incremental coun-
terpart of the energy balance Eq. (7), diagonal and off-diagonal terms yield,
respectively, _ . ' o

S = %[ > (e kv - zwfl{z/;}?[mch{*/)}f),a?}

ex1

i

bic,  i=1,2,....5, | (19

P

G =y m (lw,l — 2) CUIHIARTE —zw; z{lb};‘r[me]f{d’};)zae (15)

e=1l { ¢ w;

Further, by definition, measured modal changes are

Ty

G = Y dwic; = bicy,,, no.of (k,i) = 5, (16)

J=T#1

The advantages of the linear perturbation method are several. First, the

explicit expressions (14) and (16) for modal incremental differences between
IFEM and UFEM result in the development of linear relations for the incre-

. mental correlation variables ;a, »e=1,2,...,p. Second, partially measured

modes may be computed using eq. (17). A major disadvantage is that linear
predictions are inadmissible in the sense that orthogonality conditions with
respect to [k] and [m] are satisfied only approximately in the form of eq. (15).

In the correction phase of the algorithm in each increment, correction into
the admissible space is performed. At the end of the prediction phase, after
computing approximate values of the 1a. s, all extracted modes 1{¥'} are up-
dated. Then, the incremental counterparts of Eqs. (8) - (10) are used to solve
for the corrected values of the correlation variables ja,, € = 1,2,...,p, subject
to upper and lower bounds specified in (13). Finally, values of frequencies that
have not been measured are predicted using the Rayleigh quotient.
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(d) Depending on the number of correlation measures a. 's, and the number of
- constraints, the problems in both phases ~ prediction and correction — may be
overdetermined or underdetermined. In the former case, a generalized inverse
algorithm is used [13,9] to produce a minimum error solution in satisfaction of
all equality constraints. In the latter case, which in general provides better re-
sults, an optimization algorithm with a criterion of minimum change between
IFEM and UFEM is used. Two forms of the minimum change criterion are
available in the algorithm : (i) local (stepwise) criterion which requires min-
imization of the Euclidean norm of the 10 '3 in every increment ; (i) global
criterion which requires minimization of the Euclidean norm of the ae 's of
- each increment, where o, = II_y (1 44 @) — 1. Quadratic programming by
QPSOL is used when all constraints are linear with respect to the o, 's [14].
If the constraints are nonlinear, as in problems for plate [9] or tubular [7]
elements, a nonlinear programming solver [10] like NPSOL must be used.

(e) Computer code RESTRUCT (REdesign of STRUCTures) [11] is used to im-
plement the algorithm already described and summarized in Fig. 3. RE-

- STRUCT was initially developed to solve the problem of structural redesign -
[9]. It is currently about 22000 Fortran 77 commands. RESTRUCT may
serve as postprocessor to any special or general purpose FE code, including
MSC/NASTRAN and performs computations with concentrated mass, spring,

rod (truss), bar, beam, triangular and quadrilateral plate, and marine riser
tubular elements. ‘

.Arllalysis'

The problem of structural finite element model correlation is studied here using a 5 -
element, 9 - dof, clamped - hinged beam numerical application. The beam properties is
shown in Figure 3. From dynamic analysis, the first natural frequency and its normal
mode was computed. The first natural frequency is f; = “fon = 24,283 Hz. The
first normal mode deflections are $o1 = 0.30271, ¢y5, = 0.80156, ¢21; = 1.000, ba71
= 0.68719, where MSC/NASTRAN dof numbering is used. The database was stored
using the DMAP commands shown in F igure 4. Two applications of correlation with
. respect to measured values of f] and the corresponding mode is considered with local
(stepwise) optimum criterion and global optimum criterion in the optimization algorithm.
' In these applications, 8 mode are extracted, n, = 8 ; 10 correlation variables are used,
the moment of inertia and cross section area of each element. The results are_shown
in Table 1 and Table 2. In both cases, the correlation measure ratio r. = o [z =
2.0. The available measurements reflect deflections only. That is, only the first mode
is available for correlation, and it has been partially measured. Since the number of
constraints S = Sy + 1 = 9, is less than number of correlation variables p = 10, the
problem is underdetermined and is solved by optimization. -

10
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Figure 3: Clamped-Hinged Beam Model : 5 elements, 9 dofs



ID TAWEKAL, RICKY L. $

SOL 3 S$NORMAL MODES

SDIAG 14 VERZON O

"ALTER 509

OUTPUT4 KELM, MELM, UGV//0/8

OUTPUT2 KDICT,MDICT, LAMA, EQEXIN,GEDT//0/8/ $
OUTPUT2 VELEM//0/8 §

ENDALTER

CEND

TITLE = C-H S5~ELEMENT BEAM DYNAMIC ANALYSIS
SUBTITLE = 10 Modes. MODIFIED GIVEN’S METHOD
LABEL = BASELINE STRUCTURE

METHOD=75

DISPLACEMENT=ALL

BEGIN BULK

GRID,1, , c. ., 0. , 0., ,12345%

GRID,2, , S00. , 0. , 0. , ,1246

GRID,3, ,1000Q. , 0. , 0., ,1246

GRID, 4, ,1500. , 0. , 0., ,1246

GRID,S, ,2000. , 0. , 0., ,124s¢

GRID, 6, ,2500. , . , 0. , ,1234s

$ Reference Point for Coordinate System

GR1D,7, , 1., 1., 0., ,12345¢

CBAR 1 23 1 2 7
CBAR 2 23 2 3 ki
CBAR 3 23 3 4 7
CBAR L} 23 [ 5 7
CBAR 5 23 5 6 7

PBAR,23,25,5000.,4.17+06,1.0424+06
MATL,25,2.07+05,8.0+04,0.3,7.833-05

PARAM, COUPMASS, 1

EIGR, 75,MG1V, 0.,10000.,10,10,,1.E-05, +NEXT
+NEXT, MAX

ENDDATA

‘Figure 4: MSC/NASTRAN Yersiou 64 Input File
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Table 1 : Beam Model ; Frequency and Mode Shape Measures ; Stepwise Optimum

¢35,2

2.3881E-03

2.4952E-03

Initial Correlation | RESTRUCT | Updated Error

Model | measures prediction Model | (%)

| 24.2832 34.3416 34.34 34.3391 | -0.0071
o | 0.30271 0.20520 |  0.2952 - 0.29521 | 0.0034
é111 | -8.3266E-04 - -8.1277E-04 | -8.1339E-04 | -0.08
$151 | 0.80156 0.78908 0.78908 0.78905 | -0.0038
é17,1 | -6.8707TE-04 | - | -6.9072E-04 | -6.9258E-04 | -0.27
¢211 | 1.00000 1.00000 1.00000 | 1.00000 0.0
$231 | 8.6207E-05 - 5.2097E-05 | 4.8915E-05 | -6.04 -
G271 | 0.68719 0.70453 0.70453 0.70458 | 0.0071
$201 | 9.1521E-04 - 9.0343E-04 | 8.9972E-04 | -0.41
$3s1 | 1.2643E-03 | - 1.3217E-03 | 1.3181E-03 | -0.27
f; 78.8804 - 102.9 102.93 0.029
$o2 | -7.7108E-01 - -7.3710E-01 |-7.3540E-01 | 0.23
| é112 | 1.5231E-03 - 1.4660E-03 | 1.4596E-03 | -0.44
b15,2 | -9:4673E-01 - -9.0943E-01 | -9.0894E-01 | 0.054
b175 | -1.1855E-03 - -1.1027E-03 | -1.1019E-03 | 0.072
¢212 | 3.0329E-01 - 2.7394E-01 | 2.7235E-01 | -0.58
b3z | -2.2984E-03 - -2.2114E-03 | -2.2222E-03 | 0.49
¢272 | 1.0000E+00 |. - 1.0000E+00 | 1.0000+00 | 0.00
$202 | 3.6TT3E-04 - 2.2526E-04 | 2.0840E-04 | -7.48
- 2.5069E-03 -0.47

Number of extracted modes : n, = 8

Number of correlation variables : p = 10
Total CPU time ; ¢

1t =25,37Tmsec

Number of adrniss_ibility constraints : S, = §
. 12
* Correlation measure ratio : fwﬁ- = 2.000

** Only deflection of modal node measured
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Table 2 : ‘Beam Model ; Frequency and Mode Shape Measures ; Global Optimum

Updated

Initial Correlation | RESTRUCT Error
Model | measures prediction - Model (%).
1 24.2832 34.3416 -34.34 34.3391 0.003
o 0.30271 0.29520 0.29520 0.29522 0.007
$11,1 | -8.3266E-04 - -8.1214E-04 | -8.1213E-04 | 0.001
151 | . 0.80156 0.78908 0.78908 0.78910 0.002
é17,1 | -6.8T0TE-04 - -6.9592E-04 | -6.9473E-04 | 0.17
é211 1.00000 1.00000 - 1.00000 1.00000 0.0
$231 | 8.6207E-05 - 6.3349E-05 | 6.3491E-05 | 0.22
dar1 0.68719 0.70453 0.70453 0.70422 0.016
da01 | 9.1521E-04 - 8.9904E-04 | 8.9921E-04 | 0.019
é351 | 1.2643E-03 - 1.3176E-03 | 1.3186E-03 | 0.076
hEy 78.8804 - - 98.32 98.318 -0.002
$92 | -7.7T108E-01 - 7.8850E-01 | 7.3540E-01 | 0.18
d112 | 1.5231E-03 - -1.5733E-03 | -1.5707E-01 | 0.16
d15,2 | -9.4673E-01 - 1.0000E+00 | 1.0000E+00 | 0.000
$17,2 | -1.1855E-03 - 1.0633E-03 | 1.0675E-03 | 0.39
$a12 | 3:0329E-01 - -1.3308E-01 | -1.3269E-01 | 0.29
bas2 | -2.2084E-03 - 2.0902E-03 | 2.0918E-03 | 0.076
¢272 | 1.0000E+00 - -8.3449E-01 | -8.3610-01 | 0.19
b29,2 | 3.6773E-04 - -1.2921E-04 | -1.1528E-04 | 10.78
¢352 | 2.3881E-03 - -2.1113E-03 | -2.1188E-03 | 0.36
Number of extracted modes : n, = 8
Number of correlation variables : p = 10
Total CPU time ; ¢ 1 = 25,315 msec
Number of admissibility constraints : S, = 8
* Correlation measure ratio : Ei— = 2.000
** Only deflection of modal node measured

Discussion

For this small scale structure the relative error in the results are very small. The relative

- error in results predicted by RESTRUCT and reanalyzed by MSC/NASTRAN for the

second mode that has not been constrained are also presented in Table 1 and Table 2.
When the stepwise optimum criterion is used, a relatively large error accurs for ¢pq;
which is rotation at node #4 of the first mode and for ¢,9, which is rotation at node #5
of the second mode. In the case where the global optimum criterion is used, large error

14



occurs only for ¢,9, which is rotation at node #5 of the second mode. In general, results
generated by the global optimum criterion are better then those generated by stepwise
optimum criterion. The final fractional changes a, 's are summarized in Table 3 and
‘Table 4. - ' ’

Table 3 : Updated Beam Model ; Stepwise Optimum ;
- Frequency and Mode Shape Measures

Element . Element # _ :
Property 1| 2 | 3 | 4 T 5
I, 0.18736 | 0.08827 | 0.04046 | 0.16554 | 0.08047 ‘\
Area [ 0.01236 | -0.27256 | -0.71074 | -0.29400 -0.04378
X o =10.74636
Total CPU time = 25315 msec

Table 4 : Updated Beam Model ; Global ; Frequency and Mode Shape Measures

Element Element #

Property 1 | 2 T 73 | 4 ] 5

- I 0.41914 | 0.33602 | 0.29623 | 0.24685 | 0.12390
Area | -0.02112 [ -0.20407 | -0.41512 | -0.38547 -0.11544

YP_, of =0.82806

Total CPU time = 25377 msec

Conclusions ' o

The problem of correlating a FE Model to a real structure for which modal vibration
measurements are available was studied. The set of modal measurements may be in-
complete and only parts of specific modes may have been measured. Measurements are
assumed to be exact. Is was assumed in the problem definitions that large differences

- may exist between measured response and predictions using IFEM. Differences as large
as 100 % were used in the numerical application.
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A perturbation based methodology was developed to solve the problem of updating the
FEM without trial and error and without additional FE Analysis. Both mass and stiffness
- matrices were updated to produce an updated (correlated) finite element model (UFEM).

Correlation variables were stiffness, mass, or geometric properties of the structural ele-
ment or group of elements, and not individual terms in the stiffness and mass matrices.

Thus, the mass and stlffness matrix distributions of the updated model correspond to
the real structure.
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