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ABSTRACT

This paper extends the applicability of an existing sensitivity-based test/analysis
correlation method, which permits the refinement of a finite element model by
correlating with dynamic test results, to permit the simultaneous correlation with
test results of multiple configurations. It also demonstrates a technique to
overcome the limitation of most commercial FE programs in handling the
integrated analysis task for a structure of multiple configurations in mass
distributions, boundary conditions, and structural add-ons. Some promising
features of this application has been revealed through a numerical example.



INTRODUCTION

Test/Analysis correlation, in particular the refinement of finite element (FE)
models to accord with test results of the modeled structure, is an emerging field in the
aerospace industry. Until now, most of the work has been limited to correlations with test
data of a single configuration of a structure at a time [1-5]. In practice, however, test
articles are often tested in different configurations (different payloads and boundary
conditions, with and without add-on structures, etc.). The test data from all of these
configurations are valid, and it is usually desirable to include them all in the correlation
process. Correlating configurations individually runs the same risk that correlating
individual modes did in the past. A change which improves one configuration may
worsen the correlation of another. The obvious way to avoid this is to target the dynamic
properties of the different configurations simultaneously. This results in a unique FE
model which correlates with the test results of all the configurations in a weighted
average sense.

In MSC/NASTRAN [6], multiple configurations are handled differently
depending on what makes the configuration different. Multiple boundary conditions of
most kinds are considered as multiple subcases of the same model. Multiple mass
distributions, some boundary conditions (e.g., soft of rigid-element supports), and of
course any structural additions, are all treated as distinct models and analyzed in
separated runs. In this paper, multiple configurations of the same structure are defined in
a broad sense and include any changes which involve boundary conditions, non-structural
masses, and additional attached structures (provided that the latter two contain no design
variables).

A typical sensitivity-based correlation algorithm requires the computation of
design sensitivities for each configuration based on the corresponding analysis data. This
can cause some complexities to the data base in the multiple configuration case. In order
to avoid inconvenience in using the correlation procedure, an efficient and effective data
structure had to be carefully designed. This paper presents an approach to effectively
organize the data during the process of analyses for multiple configurations and then
performs the test/analysis correlation in a very similar fashion as in the single
configuration case.

In our basic correlation procedure [5,7], the design-sensitivities computation and
the correlation equation were implemented as a DMAP program which largely depends
upon the data base generated in the preceding analysis run. In order to correlate
test/analysis results of a structure with multiple configurations, the basic correlation
procedure had to be changed. The change primarily involves the reorganization of the
data structure which, in turn, influences the user interaction. However, it was desirable
to make the change as seamless as possible to the end user of the program. Hence the
procedural enhancement has been designed and accomplished with the idea of
minimizing user input and inconvenience.

METHODOLOGY

Consider the correlation equation as follows:
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where T and Ay are the assembled sensitivity matrix and error vector, respectively, of m
configurations, and Ax is the vector of design-variable changes, necessarily common to

all the configurations. T and Ay are assembled in the forms described below. The
assembled error vector takes the form of:
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where each {Ay'} represents the corresponding error vector of the i-th configuration. It, in
turn, can be assembled in the following form:
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It consists of the normalized eigenvalue (or frequency) error vector and the MAC (Modal
Assurance Criterion [4,8]) error vector for the modes of the i-th configuration. The

normalized eigenvalue error and MAC error for the j-th mode of the i-th configuration are
defined, respectively, as:
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where the subscripts t and a represent test and analysis, respectively.

Correspondingly, the sensitivity matrix becomes:

T=|". S ®

where a typical [T!] can be expressed as:
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It consists of two submatrices, the sensitivity matrices of the normalized eigenvalues and
of the MAC:s [8] of the i-th configuration, with respect to design variables x.

The assemblage of T and Ay is done in a sequential order such that all the

analyses and computations of {Ay} and [Ti] are performed separately and sequentially.
For instance, the i-th configuration is analyzed separately, followed by the computation

of {Ayl} and [Ti]. After {Ayl} and [T!] are formed, a merging process is performed such

that:
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When the assemblage of TM and AyMis completed (where TM and AyM include all of the
m configurations), they become:

Ay = (11)



When the assemblage of TM and AyM is completed (where TM and AyM include all of the
m configurations), they become:

T=T™ (12)

Ay = AyM (13)
Now Eq.(1) can be solved in the usual manner.

Since the objective here is to perform the correlation based on Eq.(1), we need
only to store a very small amount of data at the end of each configuration process. Eq.(1)

will be performed only when the assemblage of T and Ay is completed. This means that
the actual design changes are computed after the analysis and data processing of the last
configuration. In other words, one correlation iteration consists of a configuration-by-

configuration analysis and T and Ay assemblage process and, at the end, the computation

of the design changes. The basic iterative correlation process, based on Eq.(1), remains
the same as for a single configuration.

The multiple-configuration test/analysis correlation capability is implemented into
a MSC/NASTRAN's DMAP program, PAREDYM [9]. PAREDYM refines FE model
iteratively and determines the model that predicts natural frequencies and mode shapes of
the structure to best match the test results.

In order to ease the control of the automated iteration process as well as the
identification of the configuration data, changes in user input became inevitable.
However, the change in user input was minimized to add only one PARAM card in the
bulk data deck of MSC/NASTRAN. The new PARAM,CONFIG card has the format as
shown:

PARAM CONFIG I

where L is an integer value corresponding to the configuration identification number. The
configuration numbers are ordered numbers which identify the configuration being
analyzed (from 1 to m). The I for the PARAM,CONFIG should be equal to the positive
configuration number when it is less than m and negative m when the configuration
number is m. This tells PAREDYM not to perform the correlation computation of Eq.(1)

until the last configuration is analyzed and T and Ay are fully assembled.

NUMERICAL EXAMPLE

A simple beam was used as a structure tested in three different configurations to
demonstrate the effectiveness of the method. These three configurations are modeled by
three individual finite element models as shown in Fig.1. Each model consists of 5 beam
elements and 5 lumped mass elements at nodes. Principal area moments of inertia in the
vertical bending plane of the three far left elements, i.e., I}, 12, [ 3, and two far right
masses, i.e., Ms and Mg, were designated as design parameters. Their baseline values as
well as their target values are listed in Table 1. The target values of the design
parameters were used to generate mock test data and it is thus expected to have the
parameters updated from their baseline values to these values at the convergence of the
correlation process.



TABLE 1 Design Parameter Values

Design Parameter Baseline Value Target Value Normalizled:;I‘arget
Value
Iy 4.5 3. .66667
1 4.5 3. .66667
I3 4.5 3. .66667
Ms 3.33333 5. 1.5
Ms 3.33333 5. 1.5

* Normalized Target Value = Target Value/Baseline Value

In order to examine the effect of simultaneously correlating multiple sets of
test/analysis data, correlation of three different cases has been performed for comparison
purposes. These three cases involve correlation with different combinations of

configuration:

(CASE 1) Configuration 1
(CASE II) Configurations 1 and 2
(CASE III) All three configurations
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Fig. 1 Three Configurations of a Beam

® O O @ @ (Configurationl)
L 13 I, Iy

® @ @ @ (Configuration2)
L I L Iy

9—0—0 ¢ A (Configuation 3)
ja I I L, I




m: CASEI
|AX| 0.6+ ®: CASEII
O: CASEIN

D=3 & &
6 7 8 9

ITERATION
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TABLE 2 Comparison of Correlation Results

CASE [DESIGN TTERATION
NO. | VAR. | 3 3 ] 3
i 244 321 400 494 600
3 734 777 738 711 682
I 3 717 601 608 637 676
7 062 889 1.183 1.423 1572
5 974 750 950 1142 1.377
T 283 372 460 556 646
) 727 7766 722 7700 575
I 3 715 686 690 679 670
7 923 1.051 1318 1500 1556
5 1017 901 1.077 1.261 1.453
i 633 666 667 667 667
2 607 668 667 667 667
I 3 669 666 667 667 667
7 1357 1505 1.500 1.500 1.500
5 1203 1457 1.499 1.500 1.500

Natural frequencies and MAC coefficients corresponding to the lowest five modes
of each configuration were selected as correlation data. Table 2 lists the iteration
histories of all the normalized design variables for the three different correlation cases. It
shows clearly that the performance of PAREDYM seems to be improved as more
configurations are included in the correlation process. Figures 2 and 3 depict iteration
histories of the norms of the normalized eigenvalue errors and the MAC values,
respectively, for the Configuration 1 of all the correlation cases. The norms used here are

defined as:
. [ NMODE
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for eigenvalue errors and MAC values, respectively, of NMODE normal modes.
CONCLUSIONS

The methodology for simultaneously correlating multiple-configuration
test/analysis data of the same structure has been developed in this paper. A numerical
example has demonstrated the effectiveness of the method and has also revealed the
benefit and the potential of correlating with multiple-configuration data. )

The results of our previous work [7,9,10] had led us to believe that the correlation
process becomes more difficult to converge when there are more test data to be correlated
simultaneously. However, the numerical example in this paper shows an interesting
result which contradicts our earlier belief. Here the more test data are available for the
correlation, the better the convergence rate is,



It should also be noted that all of the correlation data have been transformed and
normalized into the well-conditioned functions, Xﬁ and MAC}. The effect of such a
transformation normally provides better numerical conditioning [8].
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