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ABSTRACT

The fiber architecture of the preform produced in a 4-Step (1x1) 3-D
Cartesian braiding process is investigated based on a study of the movement
of the fiber carriers on the machine bed. Distinctly different fiber architectures
are identified for the interior, boundary, and corner regions of the preform
and the composite. Since different fiber architectures will result in different
deformation properties, the effective deformation behavior of the composite
is expected to be the result of contributions from these different stiffness
properties.

In contrast with these findings, some of the the present analytical
models consider a “unit cell” as a repeat unit for the braided composite, and
attempt to model the mechanical behavior of the composite from the
properties of this unit cell. This unit cell is in the form of a parallelpiped with
yarns connecting between the opposite corners along the body diagonals.

In this paper, a finite element based method is proposed for modeling
the structure of the 3-D braided composite, and determining the elastic
constants and coefficients of thermal expansion. MSC/NASTRAN is used in
modeling the thermoelastic properties of the composite. Estimates of elastic
constants and coefficients of thermal expansion are developed as a function of
“interior braiding angle”.

Among advantages of this technique are simplicity, and the ability to
model and study the response of complex shapes subject to complex loads
applied at the boundary.

INTRODUCTION

The engineering applications of three-dimensional fabrics for
composites date back to the late 1960’s, responding to the needs in the
emerging aerospace industry for parts and structures capable of withstanding
multidirectional mechanical and thermal stresses. The 4-Step 3-D braiding
process is one of a few processes that produce such a three-dimensional fabric,
called a “preform”. Each of these different processes produce a preform with a
different fiber architecture.

The principal feature of 3-D braided preforms that make them desirable
for reinforcing composites is the ability to form a wide range of complex



geometric shapes [1]. Braids can not be made into wide sheets, but can form
more complex structures than materials made by any other textile process.
Other advantages of this class of composites include delamination resistance,
and good energy absorbing capability [2,3,4]. The three-dimensionally
integrated nature of these preforms is reported to result in superior damage
tolerance.

The basic braiding motion includes the alternate X and Y displacement
of yarn carriers on the machine bed followed by a compacting motion applied
to the preform. In addition to bias-oriented yarns, axial or longitudinal yarns

oriented at 0° to the braiding direction may be added to enhance the axial
stiffness of the braided composite.

4-STEP (1x1) BRAIDING PROCESS

In 4-step 3-D Cartesian braiding process fiber (yarn) carriers, which are
loaded with yarns, are arranged on the machine bed (X-Y plane) in rows and
columns to form a shape similar to the preform to be produced. Additional
fiber carriers are added to the outside of this array in alternating locations.
The end of the yarns are tied to a moveable plate above the braiding machine.
This plate is moved away from the machine bed in each machine step to
allow formation of more preform. Movement of the fiber carriers on the
machine bed in a prescribed manner will produce the braided preform above
the machine. A schematic of a typical 4-step 3-D braiding machine is shown in
Figure 1. Once the preform is formed, it is removed from the braiding
machine. The preform is then placed in a tool, impregnated with matrix
material and cured. The process examined here, which is commonly used, is
referred to as (1x1) since the fiber carriers move one carrier spacing in the X-
and Y-direction in the respective machine steps. In practice, a compacting
mechanism on the machine is used to beat up on the preform already made
to produce a tight braid. The angle the yarns in the interior of the preform

make with the Z-axis, v, is defined as “interior braiding angle”.The
compacting action is important as it influences the interior braiding angle.
The original carrier configuration on the machine bed is repeated after every
four steps, therefore the name 4-step braiding.

INTERIOR FIBER ARCHITECTURE

For sake of illustration and examination of the structure of the
preform, the movements involved in braiding a square section with only
four carriers on each side is shown in Figure 2. The plane of the machine is
considered as the X-Y plane, with the Z-axis denoting the braiding axis. The
numbers and shadings in this figure have no significance and are only
provided for visual aid and identification. The original carrier configuration
is shown in Figure 2(a). In the first two machine steps, alternate rows
(columns) are moved in opposite directions as shown in Figures 2(b) and 2(c).



In the remaining two steps this horizontal and vertical movement is repeated
in reverse. The last two steps are illustrated in Figures 2(d) and 2(e). These
movements of the fiber carriers on the machine bed produces the 3-D braided
preform above the machine under the moveable plate (x-y plane). By
superposition of the yarn structure produced in the first two steps , Figure
2(c), and the yarn structure produced in the last two steps, Figure 2(e), the
structure of the 3-D braid formed in four steps may be obtained. With the
convention that solid arrows represent the direction of the yarns in the first
two steps and the dashed arrows represent the direction of the yarns in the
last two steps, and with the understanding that the beginning points of these
arrows are raised with respect to their tip, the structure of the preform
produced during the 4-steps can be shown in a “compact form” as in Figure
3(a). The boundaries and corners of this “compact form” are shaded
differently. The fiber architecture in these areas are discussed in the following
section. Any subsequent four machine steps will produce an identical
structure. Figure 3(b) shows a schematic view of the yarns in the interior of

the braid. The angle of inclination of these yarns with respect to the Z-axis, v,
is defined as “interior braiding angle”. Figure 3(c) shows these interior yarns
in a cubical cell, with the size of the yarns reduced to provide visibility into
the cell. Figure 3(d) shows these two cells, stacked one on top of the other, in
the Z-direction. To summarize, if one idealizes the interior of the braided
composite as a cube of matrix material encapsulating the yarns , the fiber
architecture in the interior of the preform can be considered as shown in
Figure 3(d). For sake of simplification of the modeling approach that will be
proposed in the following sections, an idealization is introduced here. Instead
of idealizing these yarns as encapsulated inside the cube, they are moved to
the sides of the cube, connecting between the opposite corners, as shown in

Figure 3(e). It is evident that the “interior braiding angle” , v, is preserved.
BOUNDARY & CORNER FIBER ARCHITECTURE

Figures 4(a) and 4(b) show the carrier movements forming the interior,
the boundaries and the corners of the preform. A comparison of Figures 4(a)
and 4(b) shows that the carrier movements that result in formation of the
boundaries and corners of the preform are distinctly different from the carrier
movements that produce the interior of the braid. The reason for this is the
fact that the carriers in the top and bottom rows do not participate in any row
motion and the carriers in the left-most and right-most columns do not
participate in any column motion. Figure 5(a) is a representation of the
interior structure of the braided composite next to the boundary. It is seen that
the interior is represented by alternating the two types of interior cells
introduced before. Figure 5(b) shows this interior structure as a consequence
of the idealization introduced earlier. Figure 5(c) shows an approximation of
the fiber architecture at the boundary. As a consequence of the idealization
introduced for the interior cells, the idealized fiber architecture in the



boundary would be as shown in Figure 5(d). Examination of the idealized
structure of the boundary shows that the boundary could be visualized as
being made up of two similar, but not identical, cells that repeat themselves
in every four machine step.

Figure 5(e) shows an approximation to the fiber architecture in the
corner of the preform. As a consequence of the idealization introduced for the
interior cells before, the idealized fiber architecture in the corner would be as
shown in Figure 5(f). Examination of the idealized structure of the corner
shows that the corner could be visualized as being made up of two different
cells that repeat themselves in every four machine step.

Since fiber architecture in the interior, the boundary and corner of the
preform are different, and different fiber architectures imply different stiffness
properties, the proportion of interior, boundary, and corner in a section is
expected to influence the deformation behavior of the composite. This may be
interpreted as a “Scale Effect”. When a large section is considered, the
proportion of interior cells is bigger and the properties of the interior cells are
expected to dominate the composite properties, while when a thin section is
considered one would expect the properties of the boundary cells to dominate
the composite properties. It is important to note that the manner of
approximation of the fiber architecture at the boundary and the corner will
influence the analytical predictions for the average engineering constants of
the composite.

MODELING

The traditional approach in mechanics modeling of composites
reinforced by 3-D braided preform has been based on a “unit cell”. This unit
cell is shaped like a cube with fibers (yarns) running along the body diagonals
connecting opposite corners. Starting with this unit cell different
approximations and formulations had been proposed for predicting the
deformation behavior of the 3-D braided composites.

In the approach proposed in this paper, a finite element based method
is pursued in modeling the structure of the 3-D Cartesian braided composite.

This modeling approach is based on the following assumptions and
approximation. Consider a composite of volume V, comprised of a volume
Vm of matrix and a yarn segment with volume Vf. Define a 1-2-3 axis
system with the 1-axis directed along the axis of the yarn, and axes 2 and 3
defining a plane perpendicular to the yarn. It is assumed that the composite
properties for the yarn segment embedded in the matrix may be found by a
rule of mixture as follows, [5]:

v f v m

E.,.=v.E, +v E_ =—E +-—E

m-m =~ v m
11 f fﬁ \Y) f" \



E
E =E = m

22 33 E
1- v, [1-=—-
f( EfZ]

V12= Vfo+Vme

where the parameters with subscript f and m refer to the fiber and matrix,

respectively and E11, E22, E33, and vy define the composite properties. It is
noted that this approximation may not account for all the relevant composite
properties.

It is proposed that these composite properties may be obtained, with
some approximation, by the superposition of two “reinforcing mediums”:

1- A “modified matrix” occupying the entire volume V with the
following isotropic properties:

En=Es Vm= V12

2- A “modified yarn” with no transverse stiffness, with the following
axial property: B
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Once these two “reinforcing mediums” are superimposed, with the
requirement that the displacements be the same, the stiffness properties in
the direction of the axis of the yarn is recovered as follows:
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For a typical Graphite/Epoxy composite with a 50% fiber volume fraction the
above approximation will overestimate the local axial modulus of the
composite by 0.6 Msi. The transverse properties of the composite are only due
to contribution from the “modified matrix” with properties as shown above.



Based on the above approximation one may consider the 3-D braided
composite as a superposition of a “modified matrix model” and a “modified
yarn model”, with properties adjusted as shown above, while requiring that
the two models have the same u,v, and w displacements at the common
nodes.

A schematic view of the finite element model that represents the
structure of a repeat unit of the braided composite is shown in Figure 6(a).
The model is defined by grids on three planes which correspond to the lower,
middle, and the upper planes of this repeat unit. The grids on each plane are
defined in different coordinate systems. By moving the coordinate system of
the mid-plane and the top plane in the Z-direction, different “interior
braiding angles” are simulated. Axial, hexa, and penta elements are used to
connect to these grids in the form of the cells introduced earlier. Figures 6(b)
through 6(d) show the interior cells, boundary cells, and corner cells used in
this finite element model. The “modified yarns” are modeled as axial
elements having axial stiffness. The “modified matrix” is modeled as hexa
and penta elements with isotropic properties.

In 3-D braided composite, fiber volume fraction is a function of
braiding angle. The total length of yarns in the model is found from the
length of the yarns in the individual interior, boundary, and corner cells and
the number of each type of cell that makes up the preform. Based on the total
volume of the model, the total length of yarns in the preform, and the
desired fiber volume fraction, the area for these axial elements in the model
is calculated.

In order to demonstrate the “Scale Effect” which was introduced in an
earlier section, two finite element models are constructed. One with four
yarns per side [4x4], and one with eight yarns per side [8x8].

The model is constrained to remove the rigid body motion and
different boundary conditions are applied to calculate the different average
elastic constants of the braided composite. For example in order to calculate
the average Young’s modulus in any direction, the nodes on one face of the
model are constrained in that direction only, and the nodes on the opposite
face are displaced by the amount needed to produce a unit strain in that
direction. The SPC-forces on the nodes of the displaced face of the model are
summed up and divided by the area of that face of the model to find the
average applied stress. Since a unit strain is applied, the calculated average
stress is considered to represent the Young’s modulus in that direction. In
order to calculate the shear moduli of the composite, displacements are
applied to the nodes on four faces to produce a unit shear strain. For example
to calculate Gxy , displacements u and v are imposed on the left, right, front,
and back faces as a function of their coordinates (x,y) and with the proper sign
to produce a unit shear strain. Summation of SPC-forces in the y-direction on
the right face is found and divided by the area of that face to calculate average
shear stress. Since a unit shear strain is applied, the calculated average shear
stress is considered to represent the shear modulus in that plane. Poisson’s
ratios are found by calculating the average transverse strain due to a unit



strain in the primary direction. Average strain in a particular direction is
found by calculating the difference in the average displacement of the nodes
on two opposite faces in that direction and dividing by the distance between
the two faces. In order to calculate the thermal expansion properties of the
composite the model is only constrained to remove the rigid body motion.
Only a 1 degree thermal load is applied to the model, with no other applied
load or enforced deformation, and average strains are calculated as stated
earlier. Since a unit temperature is applied the resulting average strain in any
particular direction is considered to represent the thermal coefficient of
expansion in that direction.

TYPICAL ANALYTICAL RESULTS

In order to demonstrate the predictions of this approach, a typical
graphite epoxy system with 50% fiber volume fraction is considered. The
typical properties of the graphite and epoxy matrix are as follows:
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Ef=34x10 psi Em=05x10 psi
ve =022 Vm = 0.34
af=-1.0x10%  in./in. °F om=50x10°  in/in. °F

Estimates of elastic constants for the [4x4] and [8x8] model are
developed as a function of “interior braiding angle”. These predictions are
shown in Figures 7(a) through 7(g). The model’s predictions are shown for an

“interior braiding angle” in the range of 5° to 85° . In practice, due to geometric
limitations, preforms can not be braided to large braiding angles covered by
the predictions. Figures 7(a) through 7(g) show that the proposed “Scale
Effect” appears to be more pronounced for certain elastic constants. Also, the
predictions of the [8x8] model for the coefficients of thermal expansion are
shown in Figures 8(a) and 8(b).

The following is a discussion of the predictions of the model. Figures
7(a) and 7(b) show that the braided composite has the same modulus of
elasticity in the x- and y-direction. These figures also show that the transverse
modulus of elasticity is not very sensitive to the “interior braiding angle”.
The transverse properties (i.e. in the x-y plane) appear to be dominated by the
matrix properties. Figure 7(c) shows the variation of modulus of elasticity in
the direction of axis of braiding, as a function of “interior braiding angle”. One
can visualize that as the “interior braiding angle” becomes very small the
model resembles a unidirectional composite. At small braiding angles (5
degrees) the model predicts a modulus of about 17.2 x 100 psi. For a
unidirectional laminate with 50% fiber volume fraction, rule of mixtures
results in a value of 17.25 x 106 psi. At large braiding angles (85 degrees), the
model predicts the modulus of elasticity to be that of the modified matrix,

about 1.48 x 100 psi. Figure 7(d) shows the variation of shear modulus in the



x-y plane with the “interior braiding angle”. At small braiding angles, the
yarns are directed approximately in the Z-direction and shear modulus of the
braided composite in the x-y plane is expected to be dominated by the matrix
properties. The model’s prediction for shear modulus at small braiding angles
(5 degrees) is 4.14 x 10° psi, which is equal to the modified matrix shear
modulus. As the interior braiding angle increases, the axial elements in the

interior cells become increasingly closer to the x-y plane, and at y = 90° the

model resembles a +/- 45° laminate. The shear modulus of a +/- 45° laminate
with 50% fiber volume fraction may be found from laminate analysis codes to

be 4.5 x 106 psi. The prediction of the model for Gxy at y=85is 3.77 x 106 psi.
Figure 7(e) shows the variation of shear modulus in the x-z plane (Gxz) with
“interior braiding angle”. At very small braiding angles one would expect
this modulus to be dominated by the matrix shear modulus which is 4.14 x

100 psi. At y=5° the model’s prediction for Gyg is 4.63 x 105 psi. As the

interior braiding angle approaches 7y= 90°, the model resembles a +/- 45°
laminate. The out of plane shear modulus of this laminate is expected to be

dominated by the matrix shear modulus. The model’s prediction at y = 85° is
Gxz = 4.29 x 10 psi compared to 4.14 x 10° psi for the modified matrix.

The first index in Poisson’s ratio refers to the direction of loading , and the
second index refers to the direction of induced strain. Figure 7(f) shows the

variation of Poisson’s ratio in the x-y plane (vxy) with the “interior braiding
angle”. The model predicts that the Poisson’s ratio in the x-y plane shows

small variation for a broad range of “interior braiding angles” less than 50°.
Figure 7(g) shows the variation of Poisson’s ratio in the x-z plane (v,y) with

the “interior braiding angle”. At small braiding angles, where the braided
composite resembles a unidirectional composite, one would expect the

Poisson’s ratio to be dominated by the matrix. Aty = 5° the model predicts a
value of 0.30 compared to the Poisson’s ratio of the modified matrix of 0.28.

As the “interior braiding angle” increases to values close to y = 90°, the
stiffening effect of the yarns in the x-y plane will result in smaller value for

Vzx , about 0.07, as is seen from Figure 7(g).

The same [8x8] finite element model is used to make predictions for
expansional strains due to unit temperature rise, which may be considered as
coefficients of thermal expansion. The variation of these thermal coefficients
of expansion in the x- and z-direction are shown in Figures 8(a) and 8(b),
respectively. Ref [6] reports the results of an investigation of the coefficients
of thermal expansion for angle-ply laminates made from different material
systems. The theoretical derivation and experimental verification for all
material systems investigated in Ref [6] show similar trend as Figure 8(b). The
dip in the curve in Figure 8(b) appears to be a physical phenomena,
independent of the material system used.



CONCLUSION

The fiber architecture of the preform produced in a 4-Step (1x1) 3-D
Cartesian braiding process is investigated based on a study of the movement
of the fiber carriers on the machine bed. Distinctly different fiber architectures
are identified for the interior, boundary, and corner regions of the preform
and the composite.

A finite element based method is proposed for modeling the structure
of the 3-D braided composite, and determining the elastic constants and
coefficients of thermal expansion.

Elastic constants predicted by the model for small interior braiding
angles approach the values of the unidirectional composite, and for large

braiding angles (close to 90°) they approach the elastic constants for a +/-45°
laminate.
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Figure 1- Schematic of a typical 4-step
3-D braiding machine
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Figure 2(b)- Row movement by Figure 2(c)- Column movement by
one carrier spacing - Step 1 one carrier spacing - Step 2

Figure 2(d)- Row movement by Figure 2(e)- Column movement by
one carrier spacing - Step 3 one carrier spacing - Step 4

Figure 2- Machine movements in 4-step process
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Figure 3(c) - Yarn structure of  Figure 3(d) - Interior structure  Figure 3(e) - Idealization of
interior along braiding axis Interior structure

Figure 3- Interior structure of braided preform
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Figure 4(a)- Carrier movements making the
interior structure

Figure 4(b)- Carrier movements making the
boundary and corner of the preform

Figure 4- Carrier movements making the interior,
boundaries and corners of the preform
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Figure 5(a)- Approximation of fiber Figure 5(b)- Idealization of fiber
architecture in the interior architecture in the interior

Figure 5(c)- Approximation of fiber Figure 5(d)- Idealization of fiber
architecture at the boundary architecture at the boundary

Figure 5- Fiber architecture at the interior,

boundary, and corner
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Figure 5(e)- Approximation of fiber Figure 5(f)- Idealization of fiber
architecture at the corner architecture at the corner

Figure 5(continued)- Fiber architecture at the
interior, boundary, and corner

16



Back face

Interior Cells Right face

N\

Corner Cells

Boundary Cells

Left face

Y.
X
[4x4] model [8x8] model ‘$

Figure 6(a)- Schematic of the finite element model

Figure 6(b)- Interior cells Figure 6(c)- Boundary cells

Figure 6(d)- Corner cells

Figure 6- Finite element model of the structure of
preform produced during 4-Steps
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Figure 7- Elastic constants of 3-D braided composite
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Figure 7(continued)- Elastic constants of 3-D braided composite
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Figure 8- Coefficients of thermal expansion of
3-D braided composite
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