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Abstract

Requirements for modeling nonlinear effects in routine analysis applications have grown to the
point where “general purpose” finite element-based programs are expected to offer significant
nonlinear modeling capabilities. One result of this market demand has been this year’s
announcement of the establishment of a long term relationship between The MacNeal-
Schwendler Corporation and Hibbitt, Karlsson Sorensen, Inc. (“HKS”), whereby MSC will
package a substantial set of the capabilities offered by HKS’s ABAQUS/Standard program with
MSC/ARIES, to supplement the nonlinear capabilities of MSC/NASTRAN and MSC/DYTRAN
for applications in solid and structural analysis. MSC will provide full support of these
capabilities, as it does for its other analysis products.

Nonlinear effects introduce a broad range of issues which might deter the analyst who is
unfamiliar with this type of problem from trusting such modeling as a basis for achieving design
goals and schedules. Once nonlinearity is introduced into a model, uniqueness and stability of the
solution may be (and often are) lost, and issues of convergence, choice of nonlinear solution
algorithm, etc. must be considered. Nevertheless, the analyst may have no choice but to face up to
these problems: he cannot analyze a design for certain events, or design the manufacturing
process to create a product, without considering nonlinearity. The viewpoint taken in this paper is
that, with mature software such as the ABAQUS-based products that MSC now offers, some
nonlinear effects of practical importance can be modeled on a routine, production, basis. The
spectrum of difficulty ranges from such cases all the way to problems that are still research topics.
One purpose of this paper is to suggest what level of difficulty might be anticipated in modeling
various nonlinear effects that are commonly encountered, thus providing some guidance to the
analyst in determining the extent to which expertise is needed in order to utilize nonlinear analysis
software.



Background

MSC'’s new nonlinear analysis products are based on HKS’s ABAQUS/Standard program.
ABAQUS/Standard is a general purpose finite element program which has always emphasized
nonlinear applications. The program began as a “clean sheet of paper” design in 1978.
Throughout its history ABAQUS/Standard has been developed by HKS as a commercial
application, so that its success has been based on meeting the demands of industrial use. The
software must perform relevant simulations—robustness and broad application coverage are,
therefore, key issues. Practical problems are generally complex, so that algorithms must work in
combination, over the widest range of models. We have therefore tended to concentrate on “old
fashioned” (proven) methods.

As nonlinear analysis becomes accepted as a routine activity within the design process,
HKS'’s view is that nonlinear analysis capabilities must be integrated into general analysis
systems, HKS’s relationship with MSC is one approach to meeting this need. MSC/ARIES
provides a geometry-based analysis environment, within which the user will access a subset of
ABAQUS/Standard directly, without going through any translators. In this sense HKS is acting as
a component supplier to MSC, as it does to other vendors of general analysis systems. The
breadth of the market for nonlinear analysis is sufficient to create demand for HKS to offer its
software directly (which it does, on a worldwide basis) and as components in other systems. And
the complexity and diversity of nonlinear analysis problems provides the opportunity for HKS to
continue its focus on developing software to address them.

Typical applications

A brief listing of some typical applications where HKS has seen customers using nonlinear
analysis provides some understanding of the breadth of such usage. The list below is organized by
industry. It is incomplete, but includes enough entries to offer a sense of the range of problems to
which HKS’s products are routinely applied.

Surface vehicles (mostly passenger cars, but also trucks, trains, earth moving equipment):

« suspension system design (large motion of almost rigid components with deformable
bushings; design criteria typically include fatigue and severe events).

« engine mounts (rubber, metal and fluid; large strain).

» tires (reinforced rubber enclosing compressible gas, with contact).

+ weather-stripping (rubber with contact).

« crash, roll-over (metal visco-plasticity, large deformation of structural members, complex

contact). Such analyses are most often done with explicit dynamics programs, such as MSC/
DYTRAN and ABAQUS/Explicit.

« seat design (foam rubber, finite strain, contact, inelastic vibration).

« glass windshield, light lens manufacture (high temperature viscoelastic response of glass, with
contact).

s gear design (contact; fatigue).
» brake design (thermal fatigue, contact, strongly coupled thermal and mechanical effects).
» engine components (contact, thermal fatigue).



» convertible top (large displacements of membranes and mechanisms).

» sheet metal forming (contact, friction, metal plasticity, moderately large strain in shells,
springback). This application seems most effectively tackled with a combination of explicit
and implicit analysis.

« plastic component manufacturing (post-molding springback, buckling).

Defense

» blast loading.
« solid rocket motors (viscoelastic propellant, seals, contact).

« submarines (pressure hull collapse, underwater shock, welding, fracture mechanics, acoustics,
piezoelectric effects).

Nuclear power safety

» pressure vessels (high temperature metal plasticity and creep, fracture mechanics).
« containment structures (reinforced concrete under extreme loads).
« waste storage (geotechnical materials, flow through porous medium, thermal effects).

» piping systems subject to severe earthquake events (plasticity in the pipes, complex
nonlinearities in snubbers, relatively long response times).

Oil extraction
« flow through collapsing porous medium (geotechnical materials, coupled pore fluid flow and
large deformation).

« threaded connectors (metal plasticity, contact with large sliding).

« well liner buckling (metal plasticity, geotechnical material modeling, sliding contact, unstable
large displacements).

« drill string buckling in directional drilling (complex buckling cases, where higher order
buckling modes are often critical).

Offshore oil installations

» fatigue of steel jackets (inelastic fracture mechanics).

« pile/soil interaction; severe foundation conditions (inelastic geotechnical material modeling
for cyclic loading).

« concrete gravity platform design (heavily loaded reinforced concrete; construction,
installation, fatigue and accident analysis).

- remote installation of underwater pipelines (large displacements of very slender members).

« “floaters” (tension leg platforms). Large motions of flexible systems subjected to wave and
wind loading.

» fire hazard studies.
» removal of unneeded platforms (demolition).

Other civil engineering

» tunneling (inelastic deformation of soils, rocks, concrete, rock bolts; complex sequencing of
excavation and installation; complex geometries).



« design of elevated highways and other structures subject to large energy earthquakes.
Electronic components

« thermal fatigue of solder joints (creep/plasticity, complex contact, fracture mechanics).
High volume consumer goods

« package (bottle) design (paper laminates, paperboard, plastic, aluminum. Collapse of liquid
filled structure; manufacturing problems).

« child-proof seals (contact, inelastic deformation, instability).

« drop tests (dynamics, contact).

« diapers (partially saturated flow through highly porous, deforming medium with chemistry).
» non-traditional materials (e.g. chocolate).

It is noteworthy that most of these problems involve several nonlinear effects. HKS’s
approach has been to design a modular code: “modular” in that sense that the libraries of
elements, materials models, and analysis procedures are genuinely independent: any
combinations can be used together in a model. This is difficult to achieve, but essential, since our

experience has been that almost any guess that a particular combination is not likely to be used is
wrong!

Quality Assurance

The combinatorial issue gives rise to a difficult Quality Assurance problem—we cannot test all
combinations. HKS uses a “classical” QA approach (as defined by ISO 9000, or the NQA-1
standard for nuclear power plant design in the USA). The test suite for ABAQUS/Standard
contains about 5000 cases. These are run at each release (they take 2-5 cpu days on a typical
workstation). Regression tests are run nightly on the development versions, to help ensure that
errors are not introduced in existing features by the addition of new ones. All development
projects and bug fixes are documented, and are cross-referenced to code changes. Thus, the
reason for each line of code is known and documented. We also conduct failure analysis: all bugs
discovered after a release are diagnosed for causes. If it is deemed necessary, tests are developed
to avoid similar failures in future.

ABAQUS/Standard has a strong reputation for quality but, like any complex software
system, it contains bugs. Those that are known are documented, and this information is made
available to users. Few of them are of major significance, and there is little demand for
maintenance releases to correct errors. In this sense the extensive testing of the software prior to
release, while expensive, appears to be effective.

Sources of Nonlinearity

In this section we discuss sources of nonlinearity in solid and structural problems. The purpose of
the discussion is to provide some judgment about the level of difficulty associated with various
nonlinear effects.



Geometric/kinematic nonlinearity

The simplest form of kinematic nonlinearity is stress stiffening—the violin string effect. This
generally manifests itself in frequency shifts in vibration studies.

The opposite effect is buckling. The typical design case usually involves small
displacements: the failure of a “stiff” shell-type structure to carry load in a membrane mode.
Buckling introduces some tricky issues: the failure mode cannot easily be anticipated but the
mesh must represent it, and structures are often imperfection sensitive. The post-buckling
response may be unstable, and may even snap back. Thus, eigenvalue analysis alone is rarely
sufficient: we also need to compute the load—displacement response.

Follower force issues can add complexity. The thin cylinder under external pressure is a
simple illustration. The follower effect of the pressure loading (the loading changes direction as
the cylinder collapses) reduces the collapse load by 30%. A more subtle case is the thin cantilever
under an end load (Figure 1).

Figure 1. Cantilever under end load.

If Q is a “dead” load this is a classical static buckling case. But if @ follows the direction of
the end of the cantilever (like a jet engine on the wing of an airplane), there is no static buckling
load: the instability is a dynamic flutter.

Buckling problems provide plenty of pitfalls, and a long “learning curve” for beginners.
Further, it is difficult to build help into a code. Nevertheless, buckling and collapse is a common,
and successful, area of routine application of commercial codes by experienced analysts.

Large rotation, small strain

Many problems involve large rotations but only small strains. Examples include the roofs of
convertibles, vehicle suspension systems, aircraft landing gear, and offshore pipelaying. A
common issue in such cases is that structures are often very slender (in offshore pipelaying it is
not uncommon to encounter pipes that are kilometers long but only a few inches in diameter). The
usual displacement formulation is not suitable for such cases, because the bending and axial
stiffnesses of the members are so very different. Instead, we use a mixed formulation, For



example, the usual beam elements have displacement, u, and rotation, ¢ as degrees of freedom. To
handle such slender problems we add N, the axial force in the element, as a variable (we also add
the transverse shear forces, T, & = 1, 2, in shear flexible beams). The appropriate compatibility
conditions are added to the mechanical equilibrium equations to provide an adequate set of
equations. This means that, even before any member buckles, we no longer have a positive
definite “stiffness matrix.”

A suitable rotation measure is needed to provide a convenient approach to handling large
rotations. In this context “convenient” means that it should be easy for the user to impose
prescribed motion. This is achieved by interpreting prescribed angular motion as prescribed
angular velocity: A¢ (vector) prescribed over At is interpreted as a uniform angular velocity of
A¢/At during Az This is easy to understand, especially when prescribing compound motions
(A¢, about the axis p, followed by A¢, about p, , ...). However, the implication is that

0 IE (Ab/An)dt

where ¢ is the total rotation, defined as ¢ = |¢| radians about axis p = ¢/|¢|.

We use quaternions internally for computational efficiency, since this provides the
quaternion product for compound rotations, and such products involve only scalar and vector
operations with no singularities, regardless of the extent of the rotation.

Large strain

Large strains in solids arise from soft (visco-)elastic response, ductility (crystalline plasticity) and
frictional flow (granular materials). Except for voided materials the deformation is predominantly
deviatoric: there is hardly any change in the volume of the material. Thus, effective analysis
requires models that operate correctly with severe constraint on their volume change. Usually this
is not a problem in solid mechanics: some (but not all) elements in common use generally do an
adequate job for the rate form of incompressible deformation encountered in plastic flow models,
while mixed formulations are available for fully incompressible cases like elastomers.

ABAQUS uses a Lagrangian formulation for solids because material behavior depends on
total deformation or is history dependent. However, this means that large strains (> 50% or s0)
lead to mesh distortion. Rezoning then becomes necessary. Rezoning is essential for some bulk
metal forming and for some elastomer applications. In sheet metal forming the strains are usually
limited to less than 30% by formability limits. Nevertheless rezoning is still desirable, to model
significant local details, such as tight curvatures, wrinkling and necking. Since the
ABAQUS-based subset offered in MSC/ARIES does not provide rezoning, its application to large
strain problems is limited to those for which rezoning is not needed. In spite of this limitation, a
wide range of large strain problems can still be modeled with suitable meshing.

Material nonlinearity

Solid materials offer a very broad range of behaviors that are often complex. Some common cases
are as follows:



Elasticity

Isothermal mechanical characterization of elastic materials is simple in principle: the behavior is
defined by a strain energy density potential

W (g)

where W is the strain energy density and € is the (large) strain. Since most common elastomers are
isotropic this can be simplified to

W()\'] 7)\'2a}\'3) 2

where A; are the principal stretches. Further, since the material is usually incompressible (except
for foamed materials: see below),

x1x2x3 =1,
so that
W=WQ.A,).

Thus, we need a suitable smooth function of two variables. Ogden’s model is a useful choice:
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and p,, o, i = 1,2, ...are material parameters.

Ogden’s model is useful because it is easy to calibrate (the response of many common elastomers
can be fit accurately to quite large strain with two terms) and its stability is easily proved. Since
the material is (almost) incompressible, mixed formulation elements are needed except for plane
stress calculations. ABAQUS/Standard uses quads and bricks with constant or locally linear
pressure stress, with very few difficulties.

Foamed elastomers (such as seat cushions) can be modeled with a modified Ogden form:
“i
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where W, o, B;, i = 1,2, ... are material parameters.
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Viscoelastic modeling is expressed as a complex, frequency dependent modulus in small
vibration cases, and as a Prony series for time domain analysis. While some important materials
exhibit viscoelastic behavior, filled rubbers exhibit internal friction, not viscosity, and viscoelastic
modeling is only a coarse approximation to such behavior.

Analysis of elastic and viscoelastic components at large strain usually also involves contact,
since rubber-like materials are often used as seals or gaskets. Adjacent components are usually so
stiff compared to the elastomer that they can be considered rigid in comparison. Contact



algorithms for a deforming body interacting with a rigid body generally work quite well. Thus,
many design problems with elastomers are routine and reliable.

Ductile materials

Ductility is associated with inelastic—"plastic”—deformation of crystalline materials.
Macroscopic models of ductile behavior are generally built on the same, fundamentally simple,
foundation, using four concepts:

A strain decomposition:
F = Fel . Fpl
where F is the deformation gradient.
A stress limit for purely elastic deformation (the “yield surface”):
G(0,8,h") <0

where o is the stress, 0 is the temperature, and 1” are hardening variables.

A flow rule:

.»t  oH
€ = 55>
where H (o, 9, ha) is the flow potential.

A hardening model, giving the evolution of the n.

Fortunately, relatively simple mathematical forms for G and H are quite suitable for
common applications. For example, Mises yield with associated plastic flow (H = G ) is accurate
for gross flow of metals at low temperature. And “Coulomb” yield with purely deviatoric (and,
therefore, non-associated) flow is useful for frictional materials such as soils (although in this case
we actually use a smoothed form of the Coulomb yield surface).

The most insecure part of theory is often the hardenigg model. Here, again, simple models
work well for important applications. Perfect plasticity (A~ = 0) and isotropic hardening,

= nt @,
where ¢ is the scalar equivalent plastic strain, work well for many problems involving gross
plastic flow or relatively monotonic straining. Sophisticated hardening models are needed for

cyclic loading (to model the “Baushinger effect”), especially at high temperatures where rate
dependence also becomes important.

Since the flow rule is defined in rate form and the hardening evolution laws also generally
have a rate form, time integration is required in the numerical implementation of plasticity
models. Stable, accurate, efficient integration methods are now well known. Usually the
backward Euler method is used in implicit codes like ABAQUS/Standard.

In summary, relatively simple models are available to simulate the behavior of many
common ductile materials, and they generally work well for routine applications. Low cycle
fatigue problems are often the most challenging, because of the need for more sophisticated



hardening models that are commonly used and, often, the presence of high temperatures,
requiring visco-plastic (creep) modeling combined with yield. Appropriate models for these
applications are more complex than those built into ABAQUS/Standard.

Issues also arise in the context of microscale (but still continuum) metal plasticity modeis,
where the material appears to exhibit a characteristic length scale. One possible approach is to use
non-local constitutive modeling. However, this introduces data storage issues in a finite element
code, as well as complexities (and non-symmetry) in Jacobian calculations in implicit codes.
Alternatively, higher order continyum theories involving strain gradients and couple stresses are
used. This implies the need for C* continuous finite elements in three dimensions: a relatively
unexplored area. Metal plasticity at the microscale is still a research topic.

Brittle behavior

Concrete, rock and ceramics all exhibit brittle behavior. The analysis problem is that this causes
localization: deformation and failure concentrates into a “fracture process zone” whose dimension
is typically small compared to physical (finite element) size. Unless some accommodation is
made, results are totally mesh dependent. Consider a brittle member in tension. If the softening
behavior of the material is defined as stress-strain behavior, the overall load—displacement
response is entirely dependent on the size of the smallest element (Figure 2).
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Figure 2. Modeling a brittle member under tension.

The design approach is to recognize this fracture energy as a material property and thus
recast the softening response as stress—displacement behavior. This, together with characteristic
element size measures in the finite element model, allow failure definition, at least to the size of
the mesh discretization.

Brittle material modeling often involves other issues, such as rebar/concrete interaction.
Further, the instability associated with localization can cause severe numerical difficulties in both
implicit and explicit codes. Design analysis involving brittle material failure is still, therefore, an
area for specialists. '



Contact

Contact without friction is a purely kinematic constraint. If this is the only nonlinearity in the
problem, it is usually straightforward to analyze. Algorithms must be appropriate: our experience
suggests that we should discard penalty methods and only use Lagrange multipliers or
elimination.

There are some subtleties. For example, do we have one, two, or three constraints at a point?
The discretized finite element model itself does not know whether it is smooth or faceted—
geometric information must be associated with the model to provide the answer (Figure 3).

O\ L

When contact occurs here are
there two constraints or one?

-

-

Figure 3. Contact constraints.

Friction is a complex surface nonlinearity. Coulomb friction is a non-associated flow
plasticity model applied to surface interaction. With smooth surfaces the elastic response is
essentially rigid. However, this is one case where our experience has been that a penalty method
(with adaptive penalty selection) is the only generally satisfactory approach. We generally use an
allowable (non-zero) elastic shear slip, chosen automatically, to define the penalty (Figure 4).

Shear
stress
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limit

| Relative
Elastic motion
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Figure 4. Simple frictional model.
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This Coulomb model, together with a shear stress cut-off, is the most commonly used
frictional model. More general friction laws are beyond the scope of this discussion.

Solution algorithms

The general problem is mechanical equilibrium:

™" -pY <0,

M . . .,N .
where MN is the mass matrix, # are the nodal accelerations,

Py = ¥ oav
v

. N . . . . .
are the internal forces; B (x) is the strain rate-displacement rate transformation; o is the
Cauchy stress; V is the current volume;

PY My = [NV pas+ [N -ray
S 14

N . , . .
are the external forces; N (x) are the interpolation functions, p are the surface tractions, and r
are the volumetric loads.

M
The d’Alembert forces, MM , are negligible in static cases.

. . N
Often we also need to include general constraints of the form H (u) = 0,suchas
incompressibility:

[t a-r™av =0,
\%4

. . b, .
where J = det (F) is the total volume change at a point, and J™" is the volumetric thermal
. P . . .
expansion. L (x) is an assumed pressure stress variation, defining the pressure stress, p, to be

. p-FP -P . .
interpolated as p = L p ,where p are constraint variables.

" In ABAQUS/Standard we use constant pressure in first order elements, locally linear
pressure in second order elements for this purpose.(Figure 5).

= consfant =a,+ a1 X+ ary + aaz
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Figure 5. Mixed formulation elements for incompressible cases.
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Although some of the resulting elements do not fully satisfy mathematical stability
requirements (to avoid “checkerboarding”), in practice they generally work well except in highly
confined cases subject to high pressure.

General approach to solution

Explicit time integration of the dynamic system is the most robust method for severely
discontinuous nonlinearity (complex contact problems). The integration in time is

u|t= [u , —h 1:|/At
t+§At t-—iAf

with the same formula used for velocities so that, with fixed A¢,

w 2
Au|,,, = Au|,+i| AL

The algorithm is only conditionally stable: for an undamped system,

2
®

max
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or, stated another way, information can propagate no further than to the nearest neighbor nodes in
one time increment.

Consider a structural calculation to which the method is typically applied: a front end car
crash. The members are mostly made from steel, so that the wave speed is about 5000 m/sec. The
smallest element size will typically be about 30mm, so that

30 -
At = —5—><106 = 6 psec.

The event duration is about 0.4 sec, so that about 70,000 increments are necessary. Such
calculations are therefore typically done on vector processors.

The advantages of this approach is that it is robust (in the sense that it always computes
numbers), the cost only rises linearly with model size (so that larger models are tractable) and the
method involves purely vector operations, offering possibilities for a high level of vectorization,
and parallel processing (although complexities like contact make this difficult).

The method has several disadvantages. It is computationally intensive, and is therefore only
effective with specially designed codes (hence we see it offered in MSC/DYTRAN or ABAQUS/
Explicit, but not—yet—in more general codes like MSC/NASTRAN or ABAQUS/Standard: the
overhead of such a code is too costly to provide a competitive package). The stability limit makes
the method inefficient for quasi-static cases (“dynamic relaxation” takes many iterations). All
degrees of freedom must have inertia—we cannot have any massless nodes. Time step stability is
tricky in unstable cases, such as strain softening. It is costly to include constraints: since we do not
want to solve equations, we cannot use Lagrange multipliers, while realistic penalties can
introduce unacceptably short time steps because of stability issues. It is also undesirable to use
higher order elements, since we cannot find a suitable lumped mass for such elements.

Overall, the method is highly valuable for certain very nonlinear cases, and has become the
standard method for several important problems. These include some highly discontinuous
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quasi-static cases, such as sheet metal forming problems, simply because of the method’s
reliability in resolving cases that involve complex contact.

Implicit methods require that we solve nonlinear equations. For this purpose we generally
use Newton’s method:

- M
R 7a™ oR" /||| | R

on’ sa on rap?l| 2| |-H'

P
N N N
u =u +c,,
~P -pP P
p =p +¢,,
iterate,

where
RY = PV ™

is the residual in the equilibrium equations and

aR" sau™ aR™ /p°
i’ s du™ o /3p°
is the “Jacobian” (the stiffness matrix) of the system.

We extend the method with such techniques as the arc length constraint approach, line
search, automatic increment size selector, etc.

The advantages of this approach is that it works well for broad range of problems. It also
allows us to include general constraints via Lagrange multipliers, as indicated above.

It has several disadvantages. To achieve quadratic convergence it requires an “exact”
Jacobian. Often this is difficult to find, although symbolic manipulation packages have helped
here. The Jacobian is often not a symmetric matrix (friction, or any other non-associated plastic
flow model, provides a non-symmetric Jacobian). The solution cost rises with the cube of the
model size, because we must solve a linear system, and we generally do so with a direct (Gauss
elimination) approach, since iterative methods are not reliable for the range of applications we
need to address. Finally, the method may fail in severe cases. Nevertheless, it works well enough
that this is the standard approach offered in ABAQUS/Standard.

Given that both methods have limitations, we might consider combining them—switching
between methods as necessary. This looks attractive for certain important applications. For
example, in sheet forming we can use the explicit method to handle the complex contact problem
during the punching phase, then transfer to implicit analysis to do springback efficiently, as a
static analysis. Having thus obtained the formed component we can continue in the implicit code
to study buckling, vibration, thermal stress, etc. on the component with the actual thickness
variation and residual (self-equilibrating) stresses, or incorporate the component into a larger
model for a crash study, done again with the explicit method.
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This combined approach inherits some of the limitations of both methods. Applications are
restricted to cases where explicit modeling can be used (for example, the model cannot include
any general constraints, higher order elements or massless nodes): the “richness” of modeling
options in typical general purpose codes is not available. In the sheet forming application the
implicit code needs to use a direct equation solver (at least at this stage of development:

‘Belytschko recently noted that he has yet to see an iterative solver that can handle general, thin
shell problems robustly). The problem size is thus limited to what can be handled by such a
solver. This may be considerably less than the explicit code can manage, although for the sheet
forming example mentioned above this is not likely to be a serious limitation with currently
available computer systems.

Closure

Some quite complex nonlinear simulations in solid and structural mechanics can now be used in
design. The performance and cost of modern computers makes computationally intensive
calculations possible, suitable models (such as constitutive models) are available for common
materials, and algorithms are sufficiently robust to treat many important cases.

Many issues remain open. We lack good models for brittle materials, composites outside the
linear response range, metals at high temperatures or strain rates, flow localization in metals
(sheet formability limits) and microscale ductility studies. We only have simple models for
surface mechanical interaction (“friction”). We need more robust and efficient solution
algorithms, especially for cases involving bifurcation, instability, discontinuous nonlinearity
(contact) and combinations of these effects.

Currently we offer finite element solvers: codes that compute numbers on a given mesh.
Adaptive methods are becoming available for linear analysis. These offer the promise of
providing boundary value problem solvers—software that can compute an approximate solution
of known (or adequately bounded) accuracy to a boundary value problem. Error estimators and
adaptive methods are likely to be fundamentally different for nonlinear problems, where p-based
adaptivity is only of limited value because of the inherent lack of smoothness in many cases.
Instead, nonlinear analysis is likely to continue to use low order elements and 4-adaptivity.

Adaptivity requires automatic meshing. Currently there are no automatic meshing
algorithms that provide hexahedral elements for general geometries. Some interesting approaches
are under development, such as the Sandia “plastering” algorithm, and Cecil Armstrong’s “medial
surface” algorithm. Automatic meshing with tetrahedra elements is available, but not entirely
~ robust. Further, the first order tetrahedron is a very poor element (it exhibits extremely slow
convergence with respect to mesh size). The second order tetrahedron is expensive. It lacks a
satisfactory lumped mass, which would be needed for practical use of explicit integration, and it
does not provide satisfactory distributed of uniform surface loads, as is needed for contact. These
problems might be overcome. Alternatively, we might avoid the problem of meshing altogether,
by using meshless analysis (Belytschko, Lu and Gu, 1994).

These are future prospects. Today MSC offers a nonlinear finite element solver, based on
ABAQUS/Standard, integrated into MSC/ARIES. The nonlinear capabilities of this product are
mature and proven. They cannot model all nonlinear problems. But they offer the careful analyst
the opportunity to study a wide range of important applications that include many of the complex
combinations of nonlinear effects that arise in practice.
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