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ABSTRACT

The Quasi-Newton method has proven to be the most efficient optimization method. The
purpose of this paper is to apply this numerical procedure for optimization problems as
well as large deflection analysis and animation. A FORTRAN program developed to
calculate constrained optimization problems is used as the basic code within an iterative
nonlinear adaptive analysis. The new numerical procedure calculates the displacements of
an elastic structure due to given loading conditions. Then the displacements are added to
the joint coordinates. In the deformed position the degrees of freedom of the structure
are supported and the negative displacements are applied as loadings, to move the
structure back to the old undeformed position. The difference of the reaction forces in
both positions specifies the geometric nonlinear adaptive loading conditions. These
additional forces are applied in an iteration procedure, until equilibrium is achieved. The
software ME-BANK (Mechanical Engineering Program-Bank), written in C-language, was
developed to execute MSC/NASTRAN and a constrained optimization FORTRAN-code
via the SYSTEM-function within an iteration procedure.

INTRODUCTION

Within the last 20 years finite element concepts, and recently also boundary element
formulations, have proven to be the most reliable analysis tools for static-, dynamic-, heat
transfer-, fluid dynamic-, and electromagnetic problems. Improvements on the numerical
procedures for example eigenvalue/eigen vectoranalysis via LANCZOS-algorithms [1], as
well as increases in storage and computer efficiency, have made the finite element and
boundary element tools affordable tor everyone. The design optimization procedure is
based on an accurate finite element analysis. This very powerful tool can be used for a
large variety of problems (shape optimization, static dynamic, or buckling optimization)
to specify many design variables and to not violate the nonlinear allowable stress
(displacement) constraints.

The most powerful numerical procedure for optimization problems is the Quasi-Newton
method [3], mainly known as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.
Recently, Quasi-Newton methods have also been applied with great success for



minimization of functions, solution of nonlinear equations, design optimization, and large
deflection analysis. In this paper, we intend to apply the Quasi-Newton method to solve
arbitrary nonlinear finite element problems by adapting equilibrium via a linear finite
element code. At the same time, this method is applied to generate the keyframes [4] of
animation of elastic, plastic or kinematic deflections. The gradient projection method,
gradient method, and the steepest descent methed have been successfully applied in the
area of optimal design for many years. Quasi-Newton methods have been developed
recently. Based on statements in the state-of-the-art book Optimum Design [3], the
Quasi-Newton methods are considered to be efficient, reliable and generally applicable.
They have been extensively evaluated against other named methods. It was found that
the Quasi-Newton methods are far superior to others due to the following reasons: The
Quasi-Newton procedure requires the computation of only first derivatives. By making
use of information obtained from previous iterations, however, convergence towards the
minimum is speeded up. An approximation to the matrix of second derivatives can
therefore be generated. These methods are learning processes as they accumulate the
information from previous iterations. In this regard, the methods presented have
desirable features of both the steepest descent and the Newton methods. They are called
Quasi-Newton or update methods. First-order derivatives are used to generate
approximations for a matrix of second partial derivatives for a function f({x}) called the
Hessian matrix. A new very efticient, modified Quasi-Newton approach for large
deflection finite element analysis and animation is developed and successfully applied.

1. THE QUASI-NEWTON NUMERICAL PROCEDURE
Theoretical aspects and the development of the method by several researchers are given
in Philip E. Gill, Walter Murray, and Margaret H. Wright’s Practical Optimization [7].
Many practical applications are discussed in Jabir S. Arora’s Introduction to Optimum
Design [3]. Summaries of the Quasi-Newton numerical procedure can be found in Todd
D. Coburn’s The Quasi-Newton Method in Optimization [5].

1.1 The Newton Method
The algorithms methods are discussed based on a quadratic function of the objective
function F to be minimized [7]. There are two major justifications for choosing a
quadratic function: its simplicity and, more importnat, the success and efficiency in
practice of the method based on it.

In the same way, a parameter notation, taking into account second derivatives, is
preferred for the numerical integration of integral equations[8]. The very accurate

- numerical intefration based on moditfied cubic spline functions is also achieved in [9] by
specifying continuous first and second order derivatives. A cubic spline is a deformed
beam structure; the first derivative represents the tangent of the elastic curve, while the
second derivative represents the moment distribution or and accurate estimate of the
curvature of the beam.



If first and second derivatives of the objective function F to be minimized are available, a
quadratic function of F can be obtained by taking the first three terms of the Taylor-
series expansion about the current point in an n-dimensional Hilbert-space. The vector
{p} is specifying the {x}, search direction.
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Within the context of the model algorithm, it is helpful to formulate the function
(equation (1.1))in terms of the vector {p}, (the step to the miminum) rather than the
predicted minimum itself. The minimum of the right-hand side of equation (1.1) will be
achieved if {p}k is a minimum of the quadratic function:
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The stationary point {p}, satisfies the linear system of equation (1.4). ({P}E[G] x{P} k) in
equation (1.1) is named the curvature. The gradient {9}« ={J50op, },is the direction

vector in n-dimensional Hilbert-space. A minimization algorithm in which (p), is defined
by equation (1.4) is termed the Newton method, and the solution of equation (1.4) is
called the Newton direction.

1.2 . Quasi-Newton Method
The key to the success of Newton-type methods is the curvature information provided by
the Hessian matrix, which allows a local quadratic function of F to be developed. Quasi-
Newton methods are based on the idea of building up curvature information as the
iterations of a descent method proceed, using the observed behavior of F and {g}. The
theory of Quasi-Newton methods is based on the fact that an approximation to the
curvature on a nonlinear function can be computed without explicitly forming the
Hessian matrix.

In order to minimize the objective function F, let {s}, be the vector step taken from {x},
and consider expanding the gradient function about {x}, in a Taylor series along {s},:

{g(txh + (sh)} = {g@xn)} + {I61dsh + (13)

with the Hessian matrix [G], and the gradient vector {g}

{9}« = {0F/0p;} (1.6)

Due to equation (4.1) the curvature of F along {s}, is given by {s}[G],{s} K7
which can be approximated using _ only first-order information. Multiplying equation
(1.5) by {s}x from the left, we get:

(ts)kreldsh) = ({a(exre + s1)} - {ar ) tsn) ()
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At the beginning of the k™ iteration of a Quasi-Newton method, an approximate Hessian
matrix [B], is available, which is intended to reflect the curvature information already
accumulated. If [B], is taken as the Hessian matrix of a quadratic function, the search
direction {p}, is the solution of a linear system analogous to equation (1.4):

i

[Blx{P} = ={g}x = - {;F } . (1.8)
k

The initial Hessian approximation [B], is usually taken as the unit matrix if no additional
information is available.

After {x},<+ as been computed, a new Hessian approximation [B] is obtained by updating
[B] to take account of the newly acuired curvature information. Kn update formula is:

[Blin = [Blx + [U], | (1.9)

where [U] is the update matrix. Let the vector {s},denote the change in x during the it

iteration. Then we obtain equation (1.10) with the step lengtho%(:

{S}k = {x}k+1 - {x}k = ak{p}k (1-10)

and

{Y} {9} - {9}, (1.11)

where {y}, is the change in gradient.

The standard condition required of the updated Hessian approximation is that it should
approximate the curvature of F along {s}, - Based on equations (1.5) and (1.6) [B]KHiS
required to satisfy the Quasi-Newton condition:

[Blin{Sh = {¥}x = {9} - {9}, (1.12)



During a single iteration, new information is obtained about the second-order be}}avior of
F along only one direction; thus we would expect [B]l«tf differ from [B] DY a matrix of low
rank. In fact, the Quasi-Newton condition can be satistied by adding a rank-one matrix to
[B] g Assume that

[Ble, = [Blc + [{u}{v}T] ' (1.13)

where {u} and {v} are vectors. Similarly a symmetric rank-two update can be derived which
finally results in the well known Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula
specified in (1.14). The theoretical background is given in [7]. Many applicatiensare
summarized in [14].

[{(¥}A¥)k] .\ [{gr{g}k] (1.14)
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1.3 Efficient Large Deflection Analysis via Quasi-Newton Method

Quasi-Newton update methods are considered the most sophisticated methods of the
Newton iterative solution scheme and represent the culmination of extensive algorithm
development for Newton iterations by approximating the inverse Hessian matrix in place of
the true inverse that is required in the Newton method. Quasi-Newton methods have been
efficiently and successfully used in nonlinear optimization problems.

By the Quasi-Newton method (BFGS update), the information acquired during the
iteration is used to modify the inverse stiffness matrix. This approximate update to the
inverse stiffness matrix results in a secant modulus in the search direction. As these updates
accumulate, the BFGS method renders a stiffness matrix resembling tangential stiffness in
the limit. When combined with the line search, the performance of the BFGS update with
respect to effectiveness and efficiency depends largely on the implementation. The basic
concept of the Quasi-Newton method is to build an approximate inverse Hessian stiffness
matrix using information gathered during the descent process. The current approximation
is used at the next iteration to define the next feasible direction in the modified Newton
method. According to the first interaction, a feasible direction of descent is given by:

{d'} = [K,]"' {R(u’)}



where {R} is an error vector to be minimized and K, is a Hessian matrix. In the absence
of a line search or Quasi-Newton update, the second iteration would lead to the next feasible
direction:

{d’} = [K]™ {R(u')} , with {u'} = (u°} + {d'}

Consider a Taylor series expansion of the load error {R} about {u'}; we get

{R} = {R(u))} - [KI{{u} - {u'}} + {0(h)} (1.19

where {R(u)} = {P} - {F(u)}

with {F(u)} being the aggregate vector of element nodal forces and {P} the external load
vector. Assuming that the load stiffness due to following forces is negligible, the stiffness
matrix is formed by

_ O{R} _ O{F
K] = 2R - AFy
d{u} o{u}

In equation (1.15) the data from two points, {u"'} and {u'}, should provide some
information about [K]’ because they should satisfy:

{v} = [K1{8} or {8} = [K]'{y} G.16)
with

{&} = {u*} - {u™'} and _ (.17)

{v} = {R'} - {R™} .

Q.18)

Based on the data obtained during the iterative procedure, we construct successive
approximations to [K]™.



The Quasi-Newton scheme is the BFGS update in (1.14). By this scheme,
the Hessian matrix is updated by adding two symmetric rank-one matrices at each
iteration. Therefore, the scheme is a rank-two correction procedure:

[Kiyl™ = []7 + LE8HEYT  IKPUYMVTIRIT ()
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Note that the formula simply satisfies equation {. 16 ) while preserving the positive stiffness
and symmetry of [K]?. Equation (1.19) is equivalent to equation (1.14).

It is also possible to update approximations to the stiffness matrix itself, rather than
its inverse. Recalling the complementary roles of [K] and [K]? with respect to the Quasi-
Newton vectors in equation (), 1¢), the formula for [K] is found by interchanging {s} and

{v}:

[Kin] = [K] + YT K {8} {8}"[K, ]
{v}*{&} {6}7[K;1{6}

(1.20)

Equation (1,29 is identical to equation (L. 14).

. Inverting equation (1,20), we obtain the so-called BFGS update formula for the
inverse Hessian matrix:
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This is a recurrence formula which is applicable to every pair of Quasi-Newton (QN)
vectors. We note that the index j for the BFGS update may be different from the iteration
index i. The inverse stiffness matrix is assumed to be symmetric and positive definite
throughout the derivation.

We can easily verify that the Hessian matrix [G], in equation(1.14)is equal to the
tangential stiffness matrix [K] in equation (g, that {s}, = {x},,; - {x}, = o {p }, in
equation (1.19) is equal to {u'} - {u™} = «{d'} in equation §.17), and that {y} = {ghtt
{8} in (L.11) is equal to {R'} - {R"} in equation (L.18).

1.4 Line Search Method

The Quasi-Newton method involves the use of first order approximations for the
second order information function. This results in the rapid convergence rates of second
order methods without the problems associated with evlauating these second order
differentials. For this reason, Quasi-Newton methods are very efficient and fast of the
optimization methods.

Minimizing the total potential energy of structure applying the Quasi-Newton method
combined with the line search method is the most efficient optimization procedure analyzing
geometric nonlinear problems. The line search method is well established as a basic descent
method in nonlinear analysis. The method has been used to imporve the rate of
convergence in nonlinear iterations. A description of the line search method is given in [13]
and [14].

The process of determining the local minimum point in a given direction is called the line

search. Considering the i" iteration, the new solution set is determined by

{u'} = {u*?'} + afd'y with (4%} = [K]M{R'Y (1.22)

where a positive search parameter () is determined such that the vectors {R'} and {d'} are
orthogonal.

Equation (1.23) represents a linear interpolation in terms of {u} and {R}, which is the basis
of the line search method. The sear ch parameter a is defined in (1.24). ‘

) iy i-1
{u} = {u'} - {{u_k} {u_ }}T {R} ( 1.23 )
{{R*} - (ri1}
a=a -1-= ({R*}™(d"}) (1.24)

({({r*y - (R*3}(d %)



Within a finite element analysis the gradient vector {u} and the search parameter a are
computed via equations (1.23) and (1.2). The calculation of the "load correction vector"

{R} is explained in chapter 2.

2. CALCULATION OF "LOAD CORRECTION VECTOR ({Y}
VIA LINEAR INVERSE EQUILIBRIUM ANALYSIS

In equation (1.18 {y} = {R } - {R } is introduced as the "load correction vector" due to
large deflection increments {§} = {u*} - {u’"}. Based on a given.external load vector {P},
the internal force and reaction forces {RH} are calculated within the back substitution of
a linear finite element analysis for the unknown displacement vector.

To estimate the error vector {Y} due to large deflections caused by large external loads, we
can very efficiently analyze the "inverse" problem. We add the displacements (translatior_s
only assuming negligible rotations) to the joint coordinates. We obtain the deformed position
of the structure. Then we support the degrees of freedom and apply the negative
displacements as loadings. The linear static analysis at the deformed position moves the
structure automatically back to the previous position. The calculation of the supports or
negative reaction forces {R'}, the forces necessary to move the structure in the previous
position, is very efficient, because only the backsubstitution with known displacements is
performed solving each row of the basic linear system of equations uncoupled.

For small deflections {8} = {u'} - {u™}, the force correction vector {y} = {Ri} - {R1} is
nearly zero, indicating "linear analysis." For larger deflections (nonlinear analysis), the force
correction vector {y} is increasing considerably.

The so-called Quasi-Newton vectors {8} and {y} are applied in an iteration procedure to
correct the displacements by minimizing the potential energy (in dynamics also kinetic
energy). A tolerance parameter controls the iteration, to decide when convergence is
achieved, or to stop if the procedure is diverging. The appropriate criteria are specified in
[13]. The "change in design" (equation1.10) is replaced by the displacement
increments {6}, and the "change in gradient" (equation 1.10) is now represented by the
force correction vector {y} divided the displacement increment {&}; ({yi/éi}). The
appropriate adjustments have to be coded within the source code of the Quasi-Newton
numerical iteration procedure, which will be outlined,

Relating the displacements to the temperature distribution in heat transfer analysis
(velocities in fluid dynamics) and the forces

to heat sources (fluid sources in fluid dynamics), the outlined procedure can easily be
extended to nonlinear heat-transfer and fluid-dynamics problems. The calculation of the
force correction vector is demonstrated on the following pages considering large deflections
for a two-truss structure and a cantilever beam.

The following example  shows the solution for deflection of a two-truss structure.
We have a two-truss structure as shown in figure 1. Joints 1 and 3 are supported. A load
F is applied at joint 2 . Joint 2 moves to joint 2°. Then we support joint 2’ and
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apply the negative displacements as loadings. x and y are the horizontal and vertical
displacements. Whens = 1.5 m;h = 1.0 m, A = 0.00001 m% E = 2.07 x 10" N/m, 6 = 30
degrees, L = 1.25 m. We set up three loads frem small to large: F1 = 10.0 kN, F2 = 100.0
kN, and F3 = 300.0 kN. Using MSC/NASTRAN , displacements, loads or reactions
are displayed in table 5.

We calculate displacements at joint 2 by a linear system of equations to verify the results
from the MSC/NASTRAN input:

_ 8660 1 _ i 5
ux2 = rn— I =1.2028 x 10*/k = 7.2632 x 10 m

4 = -5000 1
¥2 1.28 k

= ~3.9063 x 10%/k

-2.3588 x 103 m .

Comparing u,, and uy, with those in table 5, we see that they are matched.

Figure 1: Two-bar structure: 1left, undeflected
shape; right, deflected shape.

Table 1 shows that for a small force F1 (appendix B), the displacements at joint 2 are
small, the reactions at joint 2 are also small, and the force correct vectors approach zero;
so the deformation is linear.

Table 1 also shows that for a large force F2 (appendix C) or F3 (appendix D), the
displacements at joint 2 are large, the reactions are also large, and the force vectors
increase considerably; so the deformation is considered as-nonlinear analysis. Therefore,
the Quasi-Newton method will be applied to optimize the solutions.
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Table ‘1.—--Deformation Results for Two-Truss Structure at Joint 2

Force Force
Corréct Correct Dis- Dis-
Load Load Reaction Vector Load Reaction Vector ©place- place-
F F, R, {v} F, R, {v} ment ment
(kN)  (kN) (k) (kN)  (kN) (kN) (kN)  u, (m)  u, (m)
10 8.66 - 8.62 0.04 - 5.0 4,99 -~-0.01 0.007263 -0.002358
100 86.6 - 82.08 4,52 - 50.0 49.79 -0.21 0.07263 -0.02358
300 259.80 -216.88 42.92 -150.0 159.20 8.20 0.21789 -0.070765

The following example  shows the solution for the deflection of a cantilever beam. The
cantilever beam shown in figure 2. is supported (fixed) at joint 1. It is divided into 10
members. Each member of the beam is equal. The cross-sectional area of beam A is 2 x
2 in. The length of beam L is 100.0 in. Young’s modulus E is 2.1 x 10° Ib/in.2,

Step 1:  As shown in figure 2, a load (joint force) F is applied at joint 11. Using an
associated MSC/NASTRAN code for a linear static solution, the calculated displacements are
listed.

1 2 3 4 5 6 7 8 9 10 11

5 e —— . j Load F1
T IR A i : I3 Load F2

\\\\\\\

<  Load F3

Figure . A l0-member cantilever beam.

The deformed beam is shown in figure 2 (dashed line).

Step 2: We consider the deformed position from step 1 as a start position. Also, the
boundary conditions are changed. Joints 2 to 11 are changed from status-free to status-
support, but moments Z are released. Applied negative displacements from step 1 become
loads (joint displacement loads). Member properties, constants and member incidences
remain unchanged. Applying the modified NASTRAN code, the calculated reactions are
listed. The deformed beam is back to the original position of step 1 or horizontal, shown
in figure 2 (solid line).



For linear deformations, the value of joint load F at the free end (joint 11) should equal
the value of joint reaction R at the fixed end (joint 1). The reactions of in-between joints
should be zero. For nonlinear deformations, the joint load at the free end (joint 11) is
not equal to the joint reaction at the fixed end (joint 1). The joint reactions occur not
only at two ends but also at the in-between joints (joints 2 to 10). The sum of the
reactions at joints 2 to 10 are very small, so are ignored. We consider this deflection as

linear deformation.

In order to have a clear view, we set up three different loads: F1 = 15.0 Ibs (small
load), F2 = 150.0 lbs (middle load), and F3 = 1,500.0 lbs (large load). The calculated
displacements and loads or reactions are listed in tables 2, 3, and 4.

Using the MSCNASTRAN code and applying a small load F1, the maximum displacement (at
joint 11) is 0.111 in., which is small compared to the length of the beam (100.0 in.). As
table 2 shows, the reactions in the X direction (load F1 direction), the reaction at joint 1
is nearly equal to that at joint 11, the reactions at joints 2 to 10 are very small, so are
ignored. We consider this deflection as linear deformation. '

Using the MSCNASTRAN code and applying a middle load F2 or large load F3, the
maximum displacement (at joint 11) is 1.11 in. or 11.1 in. which is large compared to the
length of the beam (100.0 in.). From table 3 or 4, we see the reactions not only appear
at two ends (joints 1 and 11) but also at in-between joints (joints 2 to 10). The

Tablez.—-Deformed Cantilever Beam Results, Fl = 15.0 1lb

Displace-
Joint X Force Y Force Z Moment ment

1 0.2176416 -14.9951954 -1500.0228271 0.000000
2 1.5779505 - 0.0609638 0.0000036 0.001618
3 2.6833925 0.1812560 - 0.0000056 0.006251
4 3.3384278 -~ 0.2494498 - 0.0000032 0.013562
5 3.5951750 0.1467153 0.0000038 0.023218
6 3.5133188 - 0.1017839 0.0000094 0.034883
7 3.1495285 0.2196821 0.0000084 0.048222
8 2.5637851 -~ 0.2744259 0.0000030 0.062900
9 1.7989372 - 0.2352806 0.0000006 0.078584
10 0.9163748 0.6587136 0.0000166 0.094937
11 -23.354532 14.7107325 0.0000000 0.111620

Table3~.-—Deformed Cantilever Beam Results, F2 = 150.0 1lb

Displace-
Joint X Force Y Force Z Moment ment

1 21.7640 ~150.0390 ~15000.345 0.00000
2 157.7890 - 1.4550 0.0001457 0.01618
3 268.3090 - 0.6138 0.0000658 0.06251
4 333.7700 - 6.6989 - 0.0000502 0.13562
5 359.3950 - 4.,2085 - 0.0001752 0.23218
6 351.1680 - 7.4680 - 0.0000522 0.34883
7 314.7710 -~ 4.3438 - 0.0001457 0.48222
8 256.2030 - 8.4250 - 0.0001137 0.62900
9 179.7600 - 6.6560 - 0.0000113 0.78584
10 91.5587 4.4030 0.0000304 0.94937
11 -2334.4870 185.5060 0.0000000 1.11620




Table L’..-—Deformed Cantilever Beam Results, F3 =
1,500.0 1ib

. Displace-
Joint X Force Y Force Z Moment ment
1 2174.701 =~ 1587.651 =150121.75 0.0000
2 15718.458 -~ - 855.997 - 0.0008115 0.1618
3 26531.250 - 2407.698 0.0006758 0.2651
4 32659.713 -~ 4194.857 0.0009868 1.3562
5 34744.824 - 5543.834 - 0.0000154 2.3218
6 33532.140 -~ 6303.272 -~ 0.0009786 3.4883
7 29710.881 - 6237.572 0.0017390 4.8222
8 23944.582 - 5499,351 - 0.0001169 6.2900
9 16673.930 - 4048.989 - 0.0015223 7.8584
10 8452.642 -~ 2046.108 - 0.0008894 9.4937
11 -224143.125 38725.512 0.0000000 11.1620

deformations are nonlinear.

3. APPLICATION OF THE QUASI-NEWTON METHOD

The Quasi-Newton procedure outlined in Chapter 1 and 2 are applied for the truss-and
beam-problems specified in Chapter 2. After a few iterations convergence was achieved.
The same problems were solved with the Quasi-Newton Method implemented is

MSC/NASTRAN (Version 66,67).

It was impossible to prove that the proposed modification is much more effective and
efficient. It is necessary to run a test series, solving large practical problems. The results
will be presented at the Conference. To establish the environment at the University level,
to test new numerical procedures based on existing software codes (MSC/NASTRAN),

the "Mechanical Engineering Program-bank" was developed.

4. DISCUSSION
The Mechanical Engineering Program-Bank

Today, nearly all areas of expertise in engineering are covered via large application
software packages. To integrate them into one black box makes no sense, due to
modern parallel processing technology and the need of applied research, and
maintenance. Therefore, we try to adapt all software systems via standards used for the
pre-and post-processing of data. To run an automatic process chain, applying different
software systems, can easily be achieved, programming in C-language.

MSC/NASTRAN, IDEAS (CAEDS), MSC/EMAS, MSC/DYTRAN, unconstrained and
constrained optimization FORTRAN-cades can easily be executed via SYSTEM-function
in C-language, and then applied within an iteration procedure. Via the NASTRAN-
OUTPUT.2-file, IDEAS (CAEDS) and MSC/NASTRAN are linked together.

The Mechanical Engineering Program-Bank provides the environment for a large variety
of complex engineering problems. The outlined adaptive numerical procedure for large
deflection analysis of complex structures can be extended to nonlinear transient heat-
transfer analysis. A tube consisting of ditferent layers is heated via a wire of a special
pattern (a spiral, et.). A sensor at a special location turns the heating on and off.
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The numerical simulation can be established via the Program-Bank, using
MSC/NASTRAN and a Quasi-Newton Code. The outlined procedure in Chapter 1 and
2 can easily be adapted. Relating the temperature distribution to the displacements, the
heat sources to load and react, a nonlinear transient heat transfer problem can be solved
cia MSC/NASTRAN using small time increments. If the temperature at the sensor
location has reached a maximum, the loading cards are changed to simulate a cooling
process (heat-turned off). At the minimum level of the temperature the
MSC/NASTRAN loading cards are again switched, to simulate heating.

Figure 5 shows the prompt of the command-and-menu driven Program-Bank
after initiating the software via the command ME-BANK:

Currently implemented:

NAStran
| MECHANICAL ENGINEERING |
DYTran

I PROGRAM BANK | EMAS

| | ANSys
| Designed and maintained by: | GTStrudl
CHOlesky
GAUss

] Allen Teagle, Chris Fuld, | IVerse power
| Karl Conroy,Ajay Hirve, : | MODified splines

| Ortwin Ohtmer | FOUr-bar-mechanism

NAA - Nonlinear Adaptive Analysis
FEA - Input Adaption

| Version 1.0 02/24/1994 |

! ' CAEds

—————————————————————————————————————————————— FIT (connect to VAX (TIGER) via ftp)

R 207 (printer)
Figure 5

Quit
5. CONCLUSION

To demonstrate the flexibility of the Quasi-Newton Method, several application areas are
summarized:

Minimization of functions

Finding Roots of Nonlinear Equations
Solution of Nonlinear Equations
Minimization of Total Potential Energy

Large Deflection Analysis of Elastic Structures
Design Optimization
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For Design optimization (constrained optimization) instead of minimizing the objective
function (weight, potential energy, etc.), the Lagrange function is minimized.

Via a Programbank, universities and research institutions are able to use
MSC/NASTRAN, MSC/DYTRAN, MSC/EMAS, etc. as a black box together with new
C- or FORTRAN-source codes to perform extensive test series. Based on these results
MSC should make a decision whether or not to implement new numerical procedures in,
general purpose software MSC/NASTRAN, MSC/DYTRAN, or MSC/EMAS.
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