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Abstract
Structural optimization techniques in MSC/NASTRAN may be adapted to improve the
correlation between finite element calculations and dynamic test results. The goal of the system is
to reduce the "errors" in the finite element results by predicting changes to selected structural
properties. Modern methods, which minimize weighted differences between test and analytic
results over many exciFation frequencies, have been adapted to the MSC/NASTRAN structural
désign optimizer. Response amplitudes from forced sine-sweep excitations are used as the basic

inputs and actual structural properties changes are the calculated results.

This approach bypasses many of the previous difficulties by using the following methods: 1) The
error measures are defined directly from the solution vectors to avoid large complicated symbolic
equation entries and manually transcribed data tables, 2) Frequency response solutions are used
to avoid the difficult task of calculating eigenvector derivatives, and 3) Constraint equations are
built into the solution to enforce test responses and produce faster convergence. A minor amount
of automated preprocessing is the necessary extra effort to use the standard V68 system. Test
results show the feasibility of the approach, and perhaps its practicality. Results will be shown for

a classical example problem.

Background

Previous Modal Methods
The use of quantitative methods for assessing the differences between dynamic tests and finite
element analysis has been an active field for many years. When finite element analysis was first
introduced it was treated cautiously by the test-oriented engineers. If a difference existed between
the different approaches the FE model was suspected and major modeling revisions were

attempted to cure the discrepancy. With the gains in reliability with FE methods this attitude has
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changed rapidly over the years. Now the goal is to find the actual physical differences reéardless

of the source.

Modal correlation was the favorite method for dynamicists. The references contain only a small
fraction of the hundreds of related publications issued since 1975. Methods like the MAC',
COMAC?, and many other variants have been used to match eigenvalues and eigenvectors for
lightly damped structures. These methods provide direct information on the quality of the
correlation but have difficulty in identifying specific physical properties. Also these methods had
some difficulty when closely coupled modes and finite damping occurred in the structures. The
problem was that the information available from a few measurements for a few mode shapes was

only sufficient to identify a small number of structural changes.

Another step forward has been to adopt the design optimization techniques (Flanigan® and
Blakely*) available in MSC/NASTRAN to minimize the differences between test and FE analysis
results. The problem here has been the difficulty in obtaining sensitivity derivatives efficiently for
the case of many eigenvectors or response solutions. This has led to a mixture of data

comparisons, including combinations of modal and forced response samples.

Direct frequency response methods have been adapted to analyze larger, more complex structural
systems when a large number of structural parameters may be modified and when the test
frequency range includes many-modes. The major proponent of these methods has been Lin
/Ewins’, with other recent developments by Ibrahim, et al® and Conti/Donley’. These methods try
to match the actual test responses for many frequencies with sinusoidal steady state loads. The
structural parameter changes are defined by real structural properties and some form of
minimization technique is used to solve the underdetermined system. In particular, this paper uses
the MSC/NASTRAN design sensitivity option to find linearized derivatives of the responses with
respect to the property changes (AKA design variables) for multiple frequencies. Several other

researchers are known to be pursuing this direction.

Structural optimization methods have also been improved in recent years. Current systems such as
the MSC/NASTRAN code® are capable of dealing with thousands of design variables and design
constraints (AKA output quantities) simuitaneously with many frequencies. Several linear

programming and nonlinear solution options are available as well as a general user-defined
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equation mode for defining constraints and objective functions. In essence, the optimizer modules
will determine specific design changes that will result in a feasible solution that meets the
constraint limits and minimizes an objective function. The result is a system that can be adapted to

solve the Test/Analysis correlation problem for a variety of reasonable problems.

Current Difficulties
One difficulty with using design optimization methods for test/analysis correlation is that the size
of the test data for frequency response can be large and awkward to process. The input for the
definition of a single "constraint equation" for each response point at each frequency may require
2-3 lines of hand-transcribed numbers. A second obstacle is that the response quantities, especially
near modal frequencies, are highly nonlinear and may cause trouble for the linear approximation
methods used by the optimizer. An analogy is the example of a nonlinear structure with a solution
in the post-buckled range. Attempts to use the linearized structural tangent matrix from the
pre-buckled range predict an incorrect direction the search never gets past the discontinuity.
Similarly, near a normal mode, the large slopes and discontinuities in the response curves may not
allow the optimizer to move the natural frequencies across a measured frequency point. For this
reason Ewins recommends that engineers avoid the modal frequencies in selecting test frequency

samples.

The objective of the project described below was to: a) adapt the MSC/NASTRAN design
optimization methods for determining the feasibility of parameter estimation, and b) expand the
limitations of the system to allow for higher modal density, damping and larger parameter

changes.

Theoretical Development
Basic Matrix Metheds
The information at the starting point for the process is the combination of a series of dynamic test

results along with a finite element model (FEM) which produces similar but different results.

Specifically a steady-state frequency response function, with displacements, u(®;), or

accelerations at selected points j, and at selected frequencies, o, from the test. An analytic model

is defined in terms of linear matrices, At each frequency define the impedance matrix, [Z], as:
[Z°(0)] = -[0*M° +i0B” + K“] €]
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where [M?), [B?], and [K“]are the mass, damping, and stiffness matrices for the analytic
model. Note that these matrices may be complex and unsymmetric in MSC/NASTRAN. The

analytic solutions to the loads, P=P(0), are:
[Z4(@)}{ui'} = {P:} (2

The objective of this procedure is to find the modifications to the finite element properties which
will produce a new set of impedance's, [Z“(®,)], such that for each selected frequency:

[Z¥(){u7} = {P}} (3)
where the vector, { "} at each frequency contains results that match the test data. The change in
impedance is defined as: ~

[AZ(0 )] = [Z"(@)] - [Z°(w)] 4)
The matrix changes in M, B, and K which form the matrix Z in turn may be defined by structural
parameters such as cross sectional areas or nonstructural mass densities. Note that the potential
number of parameters could grow to a large number if every element in the analytic system could
change independently. Fortunately, the important parameters is usually a reasonable number. If a
sufficient number of degrees of freedom are measured at enough frequencies the number of
unknown quantities becomes larger than the unknowns it would appear that the approximation in
Eq.(3) could be exact. However, the number of unknowns also includes all of the unmeasured
degrees of freedom in the model! If this quantity is larger than the number of measured
coordinates, and many unknown structural parameters have an effect on the whole structure, then

an approximation is the best we can hope for, and a unique solution is impossible..
We can show the relationship to the Lin/Ewin's approach to solving Eq.(3) by subtracting Eq.(2)
from Eq.(3) and substituting Eq.(5) to obtain:
[Z0) ¢t - uf} = ~[AZ)){u}} ©)
and by inverting [Z"] at each frequency we obtain a basis for iteration :
(uF —u®y = —[Z°] ' [AZ) () (7
In other words the changes in the responses are restricted by the constant analy;tic structural

properties in [Z°]. The advantage to this method is that the rows corresponding to the measured

points may be solved simultaneously with the unmeasured points. The unmeasured points in the
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{u, } vectors are updated with each estimate of [AZ,]. The errors in the tested degrees of freedom
become the measure of convergence in the iterations. The problem is that the whole right side
vector, {#*, } needs to be approximated on the first step. If the vectors, {u”} are used for the first
estimates, large differences in the incremental impedance may cause local stresses. Another
difficulty is the practical aspect of automating the iteration procedure. The test displacements or
accelerations become difficult to bring into the solution process. An alternate method, developed
below, uses a constrained initial solution to initiate the search and adopts the MSC/NASTRAN

optimization system for the parameter updates and search process.

The MSC Optimizer
Many of the processes necessary for dynamic test parameter updates are available as automatic
procedures in the design sensitivity and optimization solutions in MSC/NASTRAN?®. These
include processing of structural parameter changes as "design variables" with matrix updates and
sensitivity calculations, aﬁtomated search iterations, and controls over the errors using the "design
constraints”. Although the system was designed primarily for changing the performance of the
structural design it is general enough to accommodate other definitions of an "improved design".
However, in order to adapt the test update process to the optimization requirements we need to

modify the equations above.

The Constrained Test Point Method

Define the partitions of the estimated solution vector for each frequency, o, , and each iteration, n,

as:

()} :{ o } (®)

u

where the "t" partition contains the known displacements of the tested points and the "o" partition

contains the untested degrees of freedom. From Eq.(3) define a set of errors to be minimized as:
(8n} =[Z7"{w"} -{P}=> 0 ©)

Expand Eq.(9) into partitions:
0 Zoo Zot uy, Poi
= oi - 10
IR B IR I
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We could now solve the upper half of Eq.(10) for {«7, }and substitute the result into the lower
half to calculate the error. In effect this is analogous to an enforced displacement solution

technique. For each iteration the matrices are updated, and Eq.(10) is evaluated at all frequencies,

and the errors are collected and evaluated for use in predicting the next set of changes.

Another method to evaluate Eq.(10) without the extra partitioning steps is to use a hybrid
technique as shown below. Starting with Eq.(10), we add another set of degrees of freedom to
represent the force errors at the test points, {3", } and merge the constraint equations into the

matrix. At each frequency the modified system is:

[ZiWui"y = {Pi} (11)
where:
Zoa Zot O
[Z{1= Zio Zu ¢ |, (12)
0 ¢ %2-
uy;
{ui"}y =9 uy 1, (13)
A
and
Poi
{Pf}= Py (14)
CUi

In this "constrained" system the form is identical to the standard frequency response solution with
the error vector, { 8", } conveniently occurring as a partition of the solution vector. The actual

meaning of { 8" } depends on the coefficients ¢ and k. Some observations are: -

The terms in the diagonal coefficient matrix, [c], act as scale factors to provide scaling on 8, to

supply proper magnitudes for the optimizer.
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The diagonal terms, 1/k act like local flexibilities attached between the structure and the test
points to attenuate local measurement errors. These are chosen to absorb the effects of random
noise and local nonlinearities. Note that if the matrix terms are zero, the values, 8", correspond to

Lagrange Multipliers, and the test points are constrained exactly.

With this method the known test values are input as load vectors and also act as direct
constraints on the solution. This is more natural and direct than using an iteration procedure to
solve for a response quantity which is already known. Any differences between the test specimen
and the analytic model are now measured as force errors, which relate directly to finite element
properties. The drawback to this approach is that a certain amount of random noise may cause
large force errors. By using a loose error criteria the solution will be able to tolerate the noise as

allowable error.

Optimization Approach
The theoretical approach for the MSC/NASTRAN Optimization code is given in Ref. 7. Applying

Eqgs: (11-14) from above to the optimization procedure we can define the following interfaces for
Vo68:

* Design Variables are the structural parameters to be varied. Options include finite element
~ property data, scalar element coefficients, and grid point locations. They define the effects
of the matrices [AK], [AB] and [AM] indirectly through the finite element sensitivity
matrices..

¢ Optimization constraints are simply upper limits of the magnitude of the residual loads, d,
for selected points and selected frequencies. Indirect constraints are also available to limit
the changes in the design variables for each iteration.

+ The objective function may include a variety of parameters, including RMS. for the
response errors, limits on weight, and modal properties. Current tests have used a
minimization of a simple sum over key frequencies of the squared errors at important
points.

¢ Normal modes for the constrained system will be different than the original analytic model.
These natural frequencies will indicate the dynamic response of the unmeasured parts of the
structure. With a proper selection of measured degrees of freedom these modal frequencies
should be higher than the range of the test.

An important aspect of the optimization procedure is the linearized iteration method using

"sensitivity matrices". The actual calculation relates changes in design variables, x , -to matrix
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changes, by calculating the "pseudo load" vectors, {F, }, for all displacements and at all

frequencies, where:

(Fu@ = [F ) (15)
In order to predict the derivatives of the error with respect to the design variables we must find
the derivatives of the vector, {u,}. First take derivatives of Eq.(11), and obtain the following

equation that may be solved for the derivatives of the response, #, with respect to each design

change, x:

{5 = {2 - F Jon = (10

In MSC/NASTRAN this equation is the basis for design sensitivity calculations in a frequency
response system. The vectors {F,} are calculated at the finite element level for all frequencies and
design variables using the most recent estimates of displacements, velocities, and accelerations.
They is treated as a right-hand-side load vector in Eq.(16) in a second frequency response

calculation with results of sensitivity derivatives instead of displacements. The most important
derivatives are the partitions corresponding to the force errors, {08/0x} ,which are used to direct
the optimizer in the proper direction. In cases where the analytic solution is close to the test

speciman these terms are nearly linear and the convergence is very quick. However for cases with
large differences in structural properties and response due to changing modes, these terms become

nonlinear and can easily cause divergence in the optimizer search process.

A Discussion of Unique Solutions
If the solution were linear with respect to the design variables we could always expect unique
solutions. The number of design variables N, is the number of unknown variables. The potential
number of known coefficients N, is equal to the number of test degrees of freedom times the
number of sample frequencies times two (complex numbers). We recommend using an
overdetermined system to allow for possible redundant data. Of course, a large riumber of
frequencies in a small range with only a few active modes will not provide a great deal of

independent information. However the use of many sample test points on the structure and the use
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of multiple load cases will always help. If the design changes are large the nonlinearities may

produce several different reasonable solutions.

Examples and Tests

Example Problem: Eight dof Model with Damping
A simple example problem has been used by Ewins to test concepts and feasibility. The properties
of the analytic model are given on the sketch below. The displacements are scalar points and the
model represents four masses with inertia suspended by cables with fixed ends. The masses are
assumed to be fixed and excited by a unit load on point 1. The response results will be, in effect,

the transfer functions.

ub ué u7 us

O ML = 2.0 Nominal k = 20000.

El M1l5 = -.9166 Nominal b = 0.0

Eight Dof Model, Nominal Properties

The " Test model" is simply the "Analytic model" with the springs, k1 and k9 increased by 30%
and two dampers of b= 9.31 introduced at the same connections. The accelerations were sampled
at 10 evenly-spaced intervals between 10Hz. and 145 Hz. No attempt was made to sample the
natural frequencies. Note that Ewins only used a range covering two or three modes. In our
example the test range covers five modes. Results of four points (1,3,6,and 8) from the test were
saved for use in the subsequent updating procedure. The results of the experimental model and

the finite element properties of the analytic model were combined in the optimization analysis to
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produce estimates of property changes. In the optimization analysis all 10 stiffness properties

were allowed to vary.

The resulting displacements and accelerations in the optimization run are nearly exact, but th:
somewhat misleading since we are forcing these results with our constraints. The errors are
measured by the residual forces of constraint as indicated by the hybrid force output, A. Thes
values of the four measured points, over all 10 frequencies were the functions chosen to be

minimized by the optimizer. Some of the many variations tested were:

1 Reduced the stiffness property difference in the test run from 30 % to 5%. This run conve
almost immediately with less than 0.1% error. (The optimizer had a much more difficult ti
with the larger deviation in the remainder of the tests).

2 Used a constant damping factor on all models instead of varying the damper elements. It *
necessary at one stage because design sensitivity for damping properties was unavailable i
V67.5 and this is a typical application.

3 Tried different constraints combinations of using real or imaginary components of the co
response errors as well as requested magnitudes and phase angles. Both options worked
equally well.

4 Objective functions to be minimized included combinations and summations of errors-squ
and design variables.

5 Discovered an effective method (to be shown in the V68 Design Sensitivity and Optimiza
User Guide) which uses the maximum error as the objective function to be minimized. W
“not sure who originated this method.

In all cases the optimizer was limited to a reasonable number of iterations to simulate the
expected results from a larger problem. Some example results are shown in the plots in the
attached figures. Three curves are shown in each plot, Analytic, Test, and Modified. The
"Modified" results are obtained from another frequency response run using the properties

predicted by the optimizer.

Figures la and 1b show the results for a case with known damping, infinite stiffness for the
enforced motions, and magnitudes of the force error used as both constraints and objective
function. (dof8a). The response at 30 frequencies is shown for the analytic model, the test m
and the automatically modified model. Figure 2 shows the different properties used for the 1

springs in the three models. Note that the calculated properties of the modified system show
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relatively high stiffness for elements 2 and 9, while the stiffness of the other elements was

reduced.

Figures 3a and 3b show the results at two points using Method S, above, and using dampers in the
test run with both stiffness and damping properties as design variables in the optimizer run. Again
the results show an improvement. However, the overall stiffness estimated by the optimizer

decreased again.

Figures 4a and 4b show the results with the same inputs as the last case above, except with added
flexibility for the enforced motions (The k term in Eq. 12 ). The optimizer produced much better
stiffness properties but now had difficulty with the damping design variables. However note that
the peak frequencies corresponding to the modes were very close. An experienced test engineer

will say it is impossible to get five normal modes from four accelerometers.

Conclusions
A few large steps have been made for ﬁnding easier optimization methods and extending the
range for parameter estimation. Problems with high modal density, discrete damping, and large
property changes appear to be feasible. DMAP coding has been avoided and the interfaces use
simple available formats. Most of the effort has been spent in determining the most effective
options in the MSC/NASTRAN optimizer and choosing the best physical variables to include in
the optimization criteria. Future work should include larger and more complex realistic test cases

and examination of methods for choosing an optimum set of test frequencies.
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