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Abstract:

Most analysis considers only the nominal loads acting on a structure, but there may be significant
impact due to the variation or error in the loads as well. When there are multiple load sources, the
effect from the combination of these load variations is difficult, if not impossible, to predict. This
paper describes the use of a Monte Carlo randomization method applied to the displacement results
generated from MSC/NASTRAN analyses using sensitivity loads. A Monte Carlo process is used
to efficiently obtain a statistical distribution of possible results from the random combination of
load variations. Using the method presented minimizes the number of analyses which must be run
in order to obtain a population of results from which accurate conclusions can be drawn. The
model used represents the High Resolution Mirror Assembly (HRMA) for NASA’s Advanced X-
ray Astrophysics Facility-Imaging (AXAF-I). The variation analysis discussed considers the
impact from support induced load variations during alignment and assembly of the AXAF-I
mirrors to the mounting structure.
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1.0 Introduction

Typical finite element analyses involve the evaluation of the deformed shape or stress state
of a structure for a given set of loads and boundary conditions. Many times the exact load
magnitudes or support locations are known only within a specified tolerance, but nevertheless,
analysis is performed using only the nominal load and constraint conditions. For many structures
this type of analysis, a nominal analysis, may be all that is necessary, but for sensitive structures
the deviations of the loads and constraints from nominal, collectively called load variations, can
have an impact more significant than the nominal conditions themselves. Therefore, it may also be
necessary to perform a variation analysis to determine the effects of the load and support variations
from nominal. As an example, consider a structure uniformly supported level to gravity. Each
support exerts a nominal load. However, if the structure is tilted with respect to gravity, then each
support exerts the nominal load plus or minus a load variation--yielding a different solution.

To analyze the impact from the variations, one has to either assume a distribution of
variations or consider many different cases with random variations. Although the latter method is
more realistic, it has the potential of being too computer and manpower intensive. The first
method, although efficient, does not reveal the probability, or confidence level, of obtaining the
analyzed result.

This paper describes and provides an example of a technique that can be efficiently used to
determine the probabilistic result of a structure subjected to random load and constraint variations
within a specified tolerance. The technique uses a Monte Carlo method which is explained and
demonstrated in its application to variation analyses (section 3). After a description of the analysis -
problem to be solved and an explanation of the variation analysis concept (section 2.2), the method
will be explained (section 3) and then illustrated with a simple example (section 4). Finally, the
technique will be applied to the analysis problem for which it was developed (section 5). The
discussion in sections 3 and 4 is included as a teaching tool to demonstrate the useful application of
this technique to virtually any process where variations from the nominal conditions may cause a
significant result. The method has been implemented with a FORTRAN code [1], and all of the
program input load variation sensitivities have been generated from MSC/NASTRAN analyses.

2.0 Analysis Problem Background

Although the Monte Carlo method as discussed herein is applicable to a vast range of
situations, it was specifically developed for a class of analysis problems involved with the
assembly of the Advanced X-ray Astrophysics Facility-I (AXAF-I) High Resolution Mirror
Assembly (HRMA), a space telescope optical system. The performance of the optical system is
dependent on a number of error sources including, but not limited to, mirror fabrication quality,
system environmental conditions, and assembly residual strains. The tasks that use the Monte .
Carlo method discussed in this paper fall within the category of assembly residual strains.
Residual strains can arise from both nominal or variation sources, and it is reasonable to find that
the variation strain is larger than the nominal strain. The analysis problem that initiated the
development of the Monte Carlo method for variation analysis was the evaluation of the
performance impact from the mirror alignment system (MAS) load variations on the AXAF-I
mirrors.

2.1 AXAF-I1 HRMA Structure

NASA’s AXAF-I is one of four large orbital telescopes collectively known as the Great
Observatories for Space Astrophysics. AXAF-I along with the Compton Gamma-Ray Observatory
(GRO), Hubble Space Telescope (HST), and Space Infrared Telescope Facility (SIRTF) serve to
gather information about the origin of the universe; fundamental laws of physics; and the birth of
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stars, planets, and life by imaging astronomical objects across the entire electromagnetic spectrum
[2]. AXAF-Iis a high-resolution telescope which doubly reflects x-rays off of the mirrors in the
HRMA and focuses the image onto detectors in the science instrument module (Figure 1).
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FIGURE 1. AXAF-I Telescope Configuration. Forward section of
HRMA is exposed to x-rays.

The HRMA consists of four nested, confocal Wolter Type-I grazing incidence mirror pairs bonded
to an elaborate assembly of structural as well as thermal components (Figure 2).
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FIGURE 2. HRMA Configuration. Mirrors (8 total) are indicated.
Incoming x-rays at grazing incidence are reflected off the paraboloid mirrors and then reflected
again off the hyperboloid mirrors (Figure 3). The focal plane is approximately 10 meters from the
center of the HRMA and is located in the science instrument module.
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FIGURE 3. HRMA Optical Form. Mirrors shown without
support structure.

NASA awarded the AXAF-I contract to the TRW Space and Electronics Group in August
1988. As prime contractor, TRW is responsible for systems engineering and the integration of the
entire AXAF-I Observatory, including the design and development of the AXAF-I Spacecraft. The
TRW team includes the Eastman Kodak Company as the telescope system subcontractor. Kodak
will design and integrate the x-ray telescope, including assembly and alignment of the HRMA--the
x-ray imaging portion of the telescope. Other TRW subcontractors include Hughes Danbury
Optical Systems, who will grind and polish the mirror elements, and Ball Electronics and Space
Division, who will build the housing and components of the science instrument module. The
AXAF-I program is managed by the Marshall Space Flight Center with technical support from the
Harvard College Smithsonian Astrophysical Observatory [3].

2.2  Mirror Alignment System Variations

One of the major areas of concern during the assembly process of the HRMA at Kodak is
the residual impact of the mirror supports during the alignment and bonding of the mirrors to the
rest of the HRMA. The mirror residual strains that are added from this assembly process can be
described by the combination of the nominal and variation residuals. The nominal residual is the
strain resulting from a perfect, flawless assembly process in a gravity environment. Even though
perfect assembly conditions are assumed, the difference of the 1g environment during assembly
and the Og environment on-orbit causes a residual to be built into the system. The nominal residual
from this assembly process and the method used to perform the analysis of an assembly process in
general (where loads and boundary conditions change within the solution and each assembly step
adds deformation to the previous deformed shape) are described in a MSC 1993 Users’
Conference paper [4]. The variation residual is the strain resulting from all the imperfections and
tolerances that lead to net forces and moments on the mirrors at the support points. These load
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variations (deviations from nominal) will occur at unknown random magnitudes within the
tolerances determined from requirements and will each contribute some strain to the mirror. The
net mirror strain is the sum of all the strain contributions. The example analysis used to illustrate
the method discussed in this paper deals with these load variations that are present during the
assembly operation.

For the purposes of illustrating the Monte Carlo method, a simplified version of the Mirror
Alignment System (MAS) variation analysis will be used. Only the first stage of the analysis will
be discussed as it applies to the Monte Carlo method. The complete analysis uses the solution
method explained in the referenced paper [4] with the same application of the Monte Carlo method.
Therefore, the illustration of the Monte Carlo method itself will remain unchanged.

The simplified MAS variation analysis can be reduced to just a mirror with random load
variations applied to it at the support points. At each support point, loads can be applied in any of
the unconstrained degrees of freedom (DOF). All the mirrors are supported one at a time by the
MAS which contacts the mirror at 12 independent, equidistant points. Figure 4 illustrates one
mirror (of the eight total) as it is typically supported by the MAS. Three of the 12 points are ‘hard
points’ (spaced 120° apart) which provide a kinematic support. The hard points provide axial and
circumferential constraint on the structure at each of the three locations and apply load errors in the
other four DOF. The remaining nine points are ‘offloaders,’ or intricate levers, which provide
axial support (force, not constraint) by means of a fixed counter weight at a known distance from
the pivot point. The offloaders can apply load errors in all six DOF,

mirror
axis
Mirror —efeg—
thickness |
MIrror ~g
A A
hard point (3); A A ‘\ b d
load errors in 4 DOF I offloader (soft) point (9);
. load errors in 6 DOF
mirror outer end

(farthest from HRMA center)  mirror supports (12)

FIGURE 4. Mirror supported by the Mirror Alignment System with support
errors in unconstrained degrees of freedom at pickup points.

The load errors in each of the degrees of freedom are caused by the geometry and load
tolerances of the system. For instance, the offloader counter weight and counter weight radial
location are only known to within required tolerances. The actual weight and location on the lever
could be anywhere within the allowable tolerances. The error from these tolerances is an axial load
(force) variation from the nominal, exact value. Similarly, there is a tolerance on the nominal
mirror contact location in the radial direction. The actual contact location will be within the
allowable tolerance, and the resulting theta moment (moment about tangent line) is caused by the
radial offset times the axial force applied to the mirror by the device. Likewise, the other tolerances
in the system cause load variations at the support points.
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The exact values of the variables within the tolerances are random in nature. Biases,
known variations from nominal, are analyzed independently from the unknown variations and are
therefore not included in these calculations. Totaling up all of the load variation contributors for a
particular DOF provides the net maximum load variation for that DOF. The method used to total up
the contributors can be simple addition or RSS (root sum of squares) depending on the behavior of
the errors. In general, adding the contributors is more conservative than using an RSS, since a
RSS value includes the unlikelihood of multiple contributors occurring simultaneously at their
extreme magnitudes.

The goal of the MAS variation analysis is to determine the 3¢ performance impact from
assembling the HRMA using the MAS with load errors in tolerance. The displacement results
from the unit variation sensitivity loads are generated from MSC/NASTRAN (v67). The
discussion of the finite element analysis and Monte Carlo use is included in section 5 after the
explanation of the Monte Carlo method.

3.0 Monte Carlo Method

The Monte Carlo method, in general, is a numerical analysis technique which uses random
sampling to construct the solution of a physical problem [5] whose evolution is determined by
random events [6]. Conclusions are drawn by statistical means from the population of possible
results. This method is extremely useful for problems with many variables of a random nature
such that the probable net results are difficult, if not impossible, to determine by conventional
analysis methods.

3.1 Load Variations

Any analysis of random errors occurring on a structure is appropriate for the Monte Carlo
method as long as the individual error sources are modeled so they can be linearly combined with
each other. Typically, forces and moments are applied at discrete points on a structure to simulate
the load variations. Enforced displacements (constraint variations) at discrete points on the
structure are also acceptable since they are actually loads as well. In fact, there is great flexibility to
the type of loads allowed as long as all the error sources can be described as specific loads on the
model and the loads can be combined linearly with the other loads in the system.

The linear combination of load variations is required so that the resultant displacement from
any random load set can be calculated from just load sensitivities (unit loads). In this way, each
unique load need only be analyzed once for a given structure. Consider the following set of
fundamental equations [7]:

(F} = [K]{d} )]

{d} = [KI'}(F) @) .

where the applied forces, {F}, for the structure of stiffness, [K], cause the displacements, {d}.
Since the displacement is linear with the force, any scalar multiple of the force set, {F), results in
the same multiple of the displacement set, {d}. Now consider two different load sets, {F;} and
{F3), which cause displacement sets, {d; } and {dy}, respectively, or the total displacement, {d;} .

(dq) = [KI'}{Fy) (3a)

{dy} = [KI'}(Fy) ‘ (3b)

(dy} = {dq}+ {dy} = [KI'I((F}) + (Fy)) @)

{d)} = ®Rq{d])+ Ry{dp}) = [KI'L(R{ {Fy} + Ry(Fs)) 5)
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Variables R} and R; are random numbers (scalar values between -1 and +1), and {d¢’} is the
particular displacement solution using the random numbers. As a result of Equation §, if the
deformed shapes, {d;} and {d)}, caused by the loads, {Fy) and {K}, respectively, are known
from Equations 3, then the particular solution, {d,’}, using random numbers, Rj and Ry, is known
simply by scaling the original displacement sets by the random number magnitudes.

In the above discussion, the force sets, {F;} and {5}, could correspond to the maximum
load variation at two different points and/or DOF on the el. The displacement solution, {d¢’},
would therefore be the resulting deformed shape from one random case of load variations (within
tolerance) acting on the structure.

3.2 Monte Carlo Simulation

The power of the monte carlo method is the ability to determine the results of many cases
(1,000’s) of random load variations on a structure in a timely, efficient way. MSC/NASTRAN is
efficiently used to generate sensitivities (output displacements from known loads), and the actual
randomization occurs outside the MSC/NASTRAN solution sequence thereby eliminating the need
to apply many (1,000’s) of predetermined load vectors on the structure.

The analysis problem must be generalized by the number of points that have load variations
on them and the number of DOF that will be allowed to vary. For each point and each DOF, one
sensitivity (unit load) analysis must be run to determine the structure response to one unit of load at
that point in that particular DOF. Each sensitivity can be one subcase in a MSC/NASTRAN
solution (i.e., SOL 101).

The Monte Carlo routine must read in the input sensitivity data (nodal displacement sets)
and store the information in a matrix. Each set of displacements must be scaled by the allowable
tolerance (maximum/minimum load variation) and a random number. Summation of all the
displacement sets gives a net deformed shape for one random case. By repeating the random
number scaling and summation, more deformed cases can be generated. Figure 5 shows a simple
flow diagram for a generic Monte Carlo program. The seven main steps are shown and then
summarized into four general headings as labeled to the right of the figure. Note that in step 4 the
original matrix scaled by the tolerances is saved for use when the process is repeated from step 7.

1 Get Input
CREATE
[ SENSITIVITY
2 . . MATRIX
Create input matrix
3 Scale matrix by tolerances
4 Y SCALE
) pa—— Scale matrix by random numbers AND
¥ ADD TERMS
S5
Summation of matrix terms
° Wri ' t d ] sa
Tite output data | RESULT
, ¥ — _
<‘N—°<r 'otal number of samples generated? Yes Stop ggg%%'gs

FIGURE 5. Monte Carlo Flow Diagram. Generic program outline,
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3.3 Sensitivity Matrix

At the heart of the method is the sensitivity matrix. This matrix contains all of the behavior
of the structure based on the specified load points and structural constraints. With this matrix any
possible solution using the specified load points can be generated by combining the sets of data
using different scale factors. The same Monte Carlo program can be used for different analyses
simply by reading in different sensitivity data and creating sensitivity matrices unique to each
analysis problem. An illustration of a simple sensitivity matrix is shown in Figure 6.
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Ec(‘aa = a > ~N
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—
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D= d, DRy + dyTHR,)

—

FIGURE 6. Sensitivity Matrix. The sensitivity matrix, C, is scaled
to obtain a net displacement, D, for one random case.

The example sensitivity matrix in Figure 6 represents the problem of two varying points
with one DOF of error as introduced in section 3.1. The displacement results from the
MSC/NASTRAN unit load sensitivity analyses are the quantities dj and d2. These quantities
could be the displacement sets for the whole structure or the displacement of a single grid whose
net displacement result is desired. The sensitivity matrix, C, is scaled by the tolerance for DOF 1,
T, and random numbers, R] and Ry, to form the particular solution, C’.” The net displacement, D,
is found by summation within C’. The tolerance, T, could have been specified by point instead of
DOF in which case there would have been two tolerances, one for each point (row of the matrix).

3.4 Symmetry

It may be advantageous to make use of structural symmetry to reduce the quantity of data
that needs to be generated for Monte Carlo input. Since a typical system may have at least 10 load
points with 6 DOF of possible load variations at each point, there may be more than 60 analysis
subcases with 60 sets of output required to complete the input generation. There is the potential of
having a cumbersome quantity of data to generate. It may be easier and more efficient to reduce the
problem with symmetry and then generate the remaining data within the Monte Carlo code. If the
10 load points of this example are all symmetric with respect to the model and constraint
conditions, then only one point needs to be analyzed in all DOF: the other points can be derived
from the first. Symmetry is used in the Monte Carlo analysis of the MAS variations to reduce the )
initial 12 points with variations to only three unique points.

3.5 Results Evaluation

The results from a Monte Carlo analysis is a set (population) of possible results (samples).
Naturally, the population of samples can be statistically summarized by a mean and deviation.
Consider the problem that has one point randomly varying in one DOF. Assume that the load
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varies randomly in a Gaussian manner and some output quantity is under study. The results from
the Monte Carlo randomization will show the distribution in Figure 7 which reflects ~8000 random
samples. The output has been sorted into bins (x-axis) for output magnitudes from -1 to +1 units,
and the corresponding frequencies are shown (y-axis). The mean of the distribution in Figure 7 is
zero.

RESULTANT FREQUENCY DISTRIBUTION

FREQUENCY

=
-

RESULTANT BINS

FIGURE 7. Monte Carlo Results Distribution Example.

For this particular example, the distribution is normal, and the standard deviation can therefore be
calculated from theory (~0.33). The 30 value for this problem would therefore be ~0.99.
However, many distributions for problems are not normal, and it may not be convenient to directly
compute the standard deviation value. However, if the output quantity must be kept within a
certain range, then the probability of obtaining a value outside the range can be calculated. For
example, if the output quantity values are needed that correspond to the values between which
99.74% (30) of the other values occur [8], then the output can be sorted by absolute magnitude and
values discarded until 99.74% of the data remains. The next value in the list is the resultant
magnitude with a positive or negative sign that bounds 99.74% of the data. In a similar manner, if
the output quantity is always a positive value, such as the case of von Mises stress, then the
quantity below which 99.87% (30) of the other values occur [8] can be determined by sorting the
results by magnitude and discarding values until 99.87% remain. A variety of other statistical
conclusions can also be drawn as appropriate for the case analyzed.

4.0 Example Variation Analysis Solution

The previous example involved a problem with one point and one DOF of load variation.
This example gives the trivial solution illustrated in Figure 7 which is simply a reflection of the
random Gaussian numbers used. A more realistic problem has more than one load point and
possibly multiple DOF of load variations. In this section, consider the simply supported beam
example illustrated in Figure 8, in which there are one, two, or three load variation points with one
DOF at each point in every case. This simple example not only illustrates the use of the Monte
Cartl’cl) process, but also the dangers of overlooking or underestimating the variation analysis
problem.
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FIGURE 8. Simply supported beam example with 10 identical elements.
Three different load cases considered.

Assume that this example represents a critical component in a structure that is deformed
from some body load, such as gravity. It is required to have the beam as undeformed as possible
at the center point of the span (point 6). Three additional support points are available: points 3, 6,
and/or 9 as indicated in Figure 8. At any of these three locations, a force of a specified magnitude
can be applied to the beam. Assume the devices that are to apply the load are only accurate to
within 1 unit of load, 1 pound for this example. The device is to be calibrated so that it will most
likely apply the desired force and will least likely apply the maximum load variation, 1 pound
from the desired load; the device has a random Gaussian distribution of error about the set point.
Consider the three different options of supporting, or offloading, the beam as listed in Figure 8:

Design #1: One support device total: at point 6
Design #2: Two support devices total: at points 3 and 9
Design #3: Three support devices total: at points 3, 6, and 9

The nominal analysis considers the beam shape from the structure loaded by gravity while
supported by the end constraints plus the additional nominal load applied at each of the points as
indicated in the three different designs. The nominal loads at points 3, 6, and/or 9 are those
required to keep the center of the beam at its initial undeformed position. Therefore, each design is
equally acceptable for nominal performance since each of the three results in zero displacement at
point 6--a perfect result. Based only on the nominal analysis, all three support designs are equally
acceptable; although design #1 is simplest.

The variation analysis considers the beam shape from the structure supported by the end
constraints while subjected to variation loads at each of the points as indicated in the three different
designs. At each contact point, there is a random (Gaussian) load that is applied to the beam within
the specified tolerance. Design #1 has the statistical result already shown in Figure 7. In this
section, the magnitude of the extreme displacements (maximum and minimum value on the x-axis
of Figure 7) will be determined as well. Designs #2 and #3 involve more than one load variation
with different sensitivities at each load point (point 3 or 9 versus point 6). Therefore, it is not
immediately obvious what results will be obtained. On one hand, the additional load points may
add additional deflection to the beam. On the other hand, the additional load points may allow
some loads to cancel each other thus reducing the net deflection of the beam. -

Figure 9 illustrates some of the possible beam shapes for different combinations of load
variations at the two points of Design #2. The beam shapes illustrated only reflect the cases where
the load variations are at the maximum or minimum values (+1 or -1 pound exactly). The two
curves that show the greatest deflection at point 6 bound the problem for Design #2; the
displacements at point 6 for random cases must lie between these two displacement values.
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POSSIBLE BEAM DEFLECTIONS

Load Variations at Points 3 and 9
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FIGURE 9. Deformed Beam Shapes. Possible deformed beam shapes
from variation loads at two points (Design #2).

In order to evaluate the impact from the load variations in each of the three designs, many
random samples of possible net displacements at point 6 must be generated for each design. The
random samples for this example problem of a Monte Carlo application are generated with the
FORTRAN code, Monte-D (Monte Carlo-Displacement), supplied in Appendix A. This code is a
simple example of implementing the Monte Carlo technique with MSC/NASTRAN displacement
output. Figure 5 already showed the flow diagram which is the basis for the code. Note that the
sensitivity matrix, [C), for the analysis of Design #2 is the same matrix illustrated in Figure 6.

The Monte Carlo process can be summarized in three basic steps outlined below.

1. Generate unit load sensitivity output (displacements) using MSC/NASTRAN
2. Run Monte Carlo (FORTRAN) with parameters for the particular design analyzed
3. Statistically summarize random Monte Carlo results

The first step requires that the displacement sensitivities to unit load variations be determined. A
unit load is applied in each DOF at each point one at a time in unique subcases. The output file
(.f06) with displacements for each subcase is then used as input for the Monte Carlo code. The
Monte Carlo program is executed in step 2 with the appropriate parameters for the particular
design. For instance, in Design #1, one point would be specified with one DOF varying, and the
tolerance would be input as a scale factor applied to the unit load displacement results. Random
value parameters are also assigned, such as the number of random samples to. generate and the
random seed value to start the random number sequence. Finally, the results, a list of output
displacements based on random load variations, can be summarized using any valid statistical
means.

Based on the three designs outlined for this example problem, the displacements at grid 6
are required for load variations occurring at any of three points (3, 6, or 9) in one DOF (force in y-
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direction) at each point. All three designs were analyzed in one MSC/NASTRAN (v67, SOL 101)
solution (Appendix B). For each of the designs the Monte Carlo code was utilized once, and the
output from the designs was postprocessed in a spreadsheet/graphing package (Lotus® 1-2-3®).

BEAM CENTER POINT DEFLECTION

Histogram with Normalized Displacement
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FIGURE 10. Example Problem Monte Carlo Results. Histogram of
random sample results for three different designs.

The results are summarized in the histogram shown in Figure 10. The histogram shows all
three designs and reflects a population of 5,000 random samples for each design. The y-axis is the
frequency of occurrences, and the x-axis is the displacement magnitudes normalized by the
maximum (absolute value) displacement. For the random cases generated, this maximum
displacement was 0.40”. This maximum magnitude occurred in Design #3 which has a maximum
possible displacement of about 0.53” corresponding to all three points at their maximum (all plus
or all minus) load variation (Appendix B).

The three curves in Figure 10 are the outlines of the three different bar graphs--one for each
design. By comparing the different curves, the expectation values of the designs can be compared.
The data points correspond to bins that span from the previous x-value to the x-value with the data
point. With this note in mind, the curves are symmetric about zero displacement within random
error. Most notable is the fact that the peaks (which occur at 0.”) are clearly different for the three
designs. Likewise, the three designs have very different maximum deviations from zero. More
specifically, the largest and smallest maximum deviation occur in Design #3 and Design #2
respectively. In other words, the design with the largest probability of obtaining zero displacement
at the beam center point and also the smallest maximum deviation from zero is Design #2--two
points varying (points 3 and 9). In quantitative terms, the results can be sorted by the absolute
magnitude, and the 99.74% (30) probable displacement can be determined as explained in section
3.5. The following table (Figure 11) shows the 99.74% values for each of the three designs as
determined from the sorted list of Monte Carlo results (not included).
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BEAM CENTER POINT DISPLACEMENT

DESIGN 99.74% (30) DISPLACEMENT

#1 0.23”
#2 0.18
#3 0.31”

FIGURE 11. Resultant 99.74% (3c) Probable Center Point Displacement.

The results from the variation analysis indicate that there is a 99.74% probability that the
center point displacement will be within 0.18” for Design #2, while as much as 0.31” for Design
#3. Clearly, Design #2 is better than either of Designs #1 and #3 based on the design criterion.
Recall that based on the nominal analysis alone, all three designs were deemed equal. The 28%
difference between Design #1 and #2 could have a significant impact on the performance of the
beam structure used in this example.

As this example indicates, ignoring or incorrectly estimating the impact of the load
variations can have significant effect on the performance of a design. It is interesting to note that if
load variations were considered in this example by simply comparing the results for each design
using the worst-case load variations (maximum variation at every point), the incorrect conclusion
would be drawn. The maximum possible center deflections for the three designs are 0.25”, 0.28”,
and 0.53” respectively (Appendix B). Therefore, the ‘worst-case’ analysis would result in the
incorrect conclusion that Design #1 is best.

5.0 Mirrdr Alignment System Variation Analysis

The MAS analysis background was introduced in section 2.2. Now with the Monte Carlo
method explained in section 3, the MAS variation impact on mirror performance can be
determined. The discussion considers just one mirror (labeled P1) of the eight total, but the process
for the other seven mirrors (P3, P4, P6, H1, H3, H4, and H6) is identical.
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FIGURE 12. Mirror Finite Element Model with Load Variations.
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5.1 Finite Element Model

Recall that the simplified analysis which is considered in this discussion involves only the
mirror and applied load variations at each of the 12 support points. The half model used is taken
from a much larger model of the complete HRMA with 180° symmetry. As a result, symmetric and
antisymmetric analyses are completed, and the results are combined appropriately to yield the full
360° asymmetric structural response. The P1 mirror model with loads is shown in Figure 12.

Additional symmetry is used by realizing that only three of the 12 support points are unique
due to the symmetry of the model and constraints. Figure 13 indicates the unique points used (A,
B, and C) and how the other points are generated from them within the Monte Carlo code.

Il = hard point (2 fixed dof)
@® = offloader (all dof free)

numbers (1 to 12) indicate
reference numbers used in
monte carlo

| Sensitivity points

(unique points A, B, C)
= hard point (h.p.)
= derived from A
= next to h.p.
= derived from B
= derived from b
= opposite h.p.
= derived from C

|cut of
symmetry 5

sQOoTEe »

FIGURE 13. Symmetry of Load Variation Points on a Mirror.
5.2 Load Variations

At each of the three unique support points, random load variations are applied in all of the
unconstrained degrees of freedom. Figure 12 shows the three force components at each support
point. In addition there are three moments (not shown) about the same components. Figure 4 also
showed a mirror with load variations. The hard points shown in Figure 4 have only four free
DOF, so two of the DOF of load applied to the mirror model are loads into a constraint (zero mirror
displacement). These two DOF are not actually analyzed due to the obvious result, so a prepared,
generic zero mirror displacement file is used instead.

It is necessary to determine the actual tolerances in each DOF that can be maintained. The
manufacturing tolerances, gauge resolution, and additional capabilities are all itemized in a list and
then combined appropriately (RSS or add) depending on the nature of the errors. For the P1
mirror these capabilities result in the net tolerances listed in Figure 14. The moments are based on
a P1 mirror weight of about 430 pounds.

P1 Mirror Load Variation Tolerances

1 Radial Force 0.051b Bearing friction

2 Theta Force 0.051b Bearing friction

3 Axial Force 0.051b Calibration accuracy/bearing friction
4  Radial Moment 1.07 inch-lb  Theta position accuracy

5 Theta Moment 0.28 inch-lb  Radial position accuracy

6  Axial Moment 0.05 inch-Ib  Theta constraint misalignment

FIGURE 14. P1 Net Mirror Tolerances in All 6 DOF.
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5.3  Output Evaluation Criterion

Up until now only displacements at a single output point have been illustrated. For the
MAS variation analysis solution it is necessary to consider the entire mirror shape and its
performance impact or image quality. The performance of the AXAF-I Telescope can be quantified
by the angle measured along the focal length and subtending the diameter encompassing 90% of
the energy incident on the collective eight mirrors. This quantity is called 90% encircled energy
(90% EE) and is measured in arcseconds (1 arcsec = 5 um diameter at a 1 meter distance). The
90% EE is determined by ray tracing the deformed set of mirrors in a ray tracing code, CYGNUS,
developed for the AXAF-I Program. In addition to using raw mirror displacement data, the ray
tracing algorithm can use a set of Fourier-Legendre polynomials which when summed reproduce
the net mirror displacements. This latter ray tracing option is used for the MAS variation analysis.

Fourier-Legendre coefficients are orthonormal polynomials that collectively describe the net
deformed shape of cylindrical optics in the same manner that Zernike polynomials describe the
deformation of flat optics. The AXAF-I optics are slightly conic, but fit well with Fourier-
Legendre polynomials. Figure 15 shows a few mirror shapes corresponding to common
polynomials with reference names as indicated. The polynomials fit the mirror deformed shape in
the same manner that a set of sine functions could describe the different beam shapes from the
example illustrated in Figure 9. Using a set of polynomials is more efficient than using the
complete set of raw displacements since only two values, A and B, per coefficient are needed. The
AXAF-I optics are usually fit with a series of 154 coefficients total with less than 1% truncation
error. Each set of displacements for the load variation sensitivities is therefore fit with polynomials
before Monte Carlo is performed. Since the Monte Carlo method linearly combines scaled
displacements, the polynomials can be likewise scaled and linearly added. The Monte Carlo code,
Monte-I (Monte Carlo-Imaging), used for the MAS variation analysis manipulates the polynomial
input sensitivities instead of the actual displacements and then calls the ray tracing program.

N
i
I
I

I||| \
DAL
7

7

\
l

i
7

7z

-.:{4,,

2

N\
)
!

%

7

7
k
N

N

=

FIGURE 15. Example Fourier-Legendre Coefficient Shapes on a Mirror.
Net mirror displacement can be fit by sum of coefficients.

5.4  Sensitivity Matrix

The sensitivity matrix, [C], for the MAS variation analysis has a similar structure to the
matrix shown in Figure 6 except that each cell in the matrix contains a submatrix of coefficients
instead of a single displacement value. The matrix is shown in Figure 16 and has 12 rows for the
different load variation points and 6 columns for the different DOF that can vary. The third
dimension to the matrix is for the 8 different mirrors of the HRMA. Each submatrix of coefficients
contains the 154 coefficient pairs used to fit a net deformed mirror.  The tolerances, (T), and the
random numbers, (R), are sets of scale factors applied to the terms in the matrix, [C], to form the
sample solution, [C’]. Each column of [C] is multiplied by one value from (T) and each
submatrix, [c(i,j,k)], is multiplied by one value from (R); matrix multiplication is not performed.
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FIGURE 16. Sensitivity Matrix for the MAS Variation Analysis.
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5.5 Analysis Results

The requirements for the HRMA are based on 36 performance estimation. Therefore, the
Monte Carlo results, 90% EE values, are sorted by magnitude; and since the quantities are always
positive, the 99.87% value is selected as the answer. The value selected depends on the number of
samples available. Obviously the larger the sample size the more statistical confidence there is in
the answer. Figure 17 indicates the convergence rate of the 36 90% EE values for the analysis.

MONTE CARLO CONVERGENCE

0.40 -

83
Sone
L
=
- convergence
2 i level
Bg o301
£5
g 0.25 -
- 4
0.20 T v v . -
0 1000 2000 3000 4000

Sample Size

FIGURE 17. Monte Carlo Convergence of 3¢ Results.
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Based on Figure 17 it appears that the solution converges with about 1,000 samples. However, it
is also important to see how much variation there is between different populations of the same
number of samples. The difference between populations provides insight into the magnitude of the
error bars on the data points in Figure 17. Figure 18 shows how repeatable the resuits are for
different populations of a few sample sizes. As expected, the larger sample sizes have much less
variation than the smaller samples.

MONTE CARLO REPEATABILITY
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0.20 —T T
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FIGURE 18. Monte Carlo Repeatability of 3G Results.

The 36 90% EE for the MAS variation analysis discussed is 0.35 arcsecond (Figure 17 or
18). By tightening manufacturing and assembly tolerances and reevaluating the answer with the
Monte Carlo method, the result has decreased to 0.19 arcsec. This result compares to a total error
budget of 1.0 arcsecond for all HRMA errors. This variation analysis turns out to be one of the
large error contributors in the HRMA assembly. The nominal analysis of the same assembly
process yields a negligible result of 0.0006 arcsecond [4]. Obviously, ignoring the load variation
effects would be a serious error.

6.0 Conclusions

The load variation effects can have a very significant impact on the performance of a
structure. Therefore, in addition to a nominal analysis of the structure, the impact due to variations
from nominal should also be considered. Using a ‘worst-case’ analysis instead of Monte Carlo
‘may be difficult and incorrect when there are several different load variations involved.

The Monte Carlo method as presented can be used in many different applications. In
addition to randomizing nodal forces and moments; grid point temperatures, gravity load vectors,
pressure loads, and many other loads can all be used for the load variation. Similarly, in addition
to the displacement (or displacement polynomial) output quantity presented; stress, strain, internal
force, velocity, acceleration, or any other quantity that is linearly dependent on the applied loads
can be used as an output quantity for the Monte Carlo results.

With the Monte Carlo method, the analyst can not only predict the result of the variation
analysis, but can also determine the probability for a result to occur.

18



Acknowledgements:

Vic Genberg
Senior De51gn Engineer -- Eastman Kodak Company
Assistance in developing the Monte Carlo concept and implementation.

Gary Matthews
Senior Design Engineer -- Eastman Kodak Company
Formation of the Monte Carlo concept for the HRMA applications.

Gregory Young
Senior Design Engineer -- Eastman Kodak Company
Assistance in determining the MAS variation tolerances for use in Monte Carlo

Ed Baraban

Systems Engineer -- Eastman Kodak Company

Use of the Monte Carlo code with the optical ray tracing code to generate
the encircled energy samples shown in Figures 17 and 18.

References:

(11
(2]

31

(41

(5]

(6]

[7]

(8]

FORTRAN 77, DEC Fortran X3.2(u2) for ULTRIX/RISC Systems

*“The Great Observatories for Space Astrophysics,” National Aeronautics and Space
Administration, Astrophysics Division, NP-128.

Casey, T. M., Matthews, G. W., Waldman, M., “After Einstein: The AXAF Program,”
Space Technology International, Cornhill Publications Limited, London, England, 1991.

Genberg, V., Stone, M. J., “Nonlinear Superelement Analysis to Model Assembly
Processes,” MSC 1993 World Users’ Conference Proceedings, Session SA, The
MacNeal-Schwendler Corporation, 1993.

Carter, L. L., Cashwell, E. D., Particle-Transport Simulation with the Monte Carlo
Method, Energy Research and Development Administration, Oak Ridge, Tennessee, 1975.

Kalos, M. H., Whitlock, P. A., Mon o M ; I; Basics, John Wiley &
Sons, New York, 1986.

Logan, D. L., A First Course in the Finite Element Method, PWS-Kent Publishing
Company, Boston 1986.

Hoel, P. G., Port, S. C., Stone, C. J., Introduction to Probability Theory, Houghton
MfﬂmCompany, Boston 1971.

19



APPENDIX A.

CRetrhotnassstadiRabiandhined

C PROGRAM MONTE-D (MONTE CARLO for DISPLACEMENT Input)
Chetdatisbascttarbtndtasy * [T 1)

MONTE CARLO RANDOMIZATION APPLIED TO LOAD VARIATION SENSITIVITY
OUTPUT —)> NASTRAN DISPLACEMENTS

Ly Yy 2Ty

chabbnasang

WRITTEN BY: MARK STONE 1,03/94

BASED ON CONCEPTS FROM PROGRAM: ' =1’ (Imaging)

Ihﬂhnh

Choessttparameters
INTEGER IN,OUT,POINT,DOF
PARAMETER (OUTw11,IN=12, POINT=10,DOF=6)
(<
Cesdeetipeclared variables
INTEGER PTS,DF,DIR,GID,SUB(POINT,DOF),NIC,SD,SC,SCIL,SCY
INTEGER GIDIMP,I1,J,Q
REAL*S TOL(DOF),C(POINT,DOF} ,CP({POINT,DOF) ,DISP, RNDM
CHARACTER*132 CARD
CHARMCTER*60 TITLE,LABEL
CHARACTER*30 FILEIN,FILDOUT,FN(10}

c
Cheansinsyger input section
Créssstirile information
WRITE(6,*) ‘ Enter filename of the MSC NASTRAN displacements’
READ{5,’{A)*} FILEIN
WRITE(6,*) ' Enter filename for the random case output file’
READ(S, * (A}’} FILBOUY
WRITE(6,*) ' Enter the output file TITLE'
READ(S, “(A)’} TITLE
WRITE(6,*%) ‘ Enter the cutput file LABEL’
READ(S, ’(A)’) LABEL
Creessseyariation Analysis parameters
WRITE(6,*) ° Enter the ik
READ{(S,*) PTS
WRITE(6,*) ’ Enter the mmber of load DOF per point to use’
READ(S,*) OF
Cettssimodel information
WRITE(6,%) * Enter the grid point number (GID} to investigate’
READ(5,*) GID
WRITE(6,*) ‘ Enter MSC NASTRAN output DOF for randomization’
READ(S5,*) DFR
DO I = 1,PTS
DoOJ=1,DF
WRITE(6,*) ' Enter subcase number for load at point:’,
WRITE(6,*) * in DOF labeled:’,J
READ(5,*) suB(1,J)

of load poi in the problem’

ENDDO
CtrsessiTolarances — can be by DOF or alternately, by POINT
Crensstatolarance by DOF shown here
WRITE(6,*) * Tolerances are scale factors applied to input.-’
WRITE(6,*} * For unit input sensitivities, tolerances are '
WRITE(6,*) * actual max/min values of load variations.’
DO J = 1,0F
WRITE(6,*) ' Enter the tolerance to apply to DOF:,J
READ(S, *} TOL(J)

ENDDO

CrrentttRandom parameters .
WRITE(6,*) ’ Enter the number of random test cases’
READ(5,*) NIC
WRITE(6,*) ’ Enter random seed value (large odd integer)’
READ(S,*) SD

C

Ceresssopity Administration
OPEN (UNIT~OUT , NNME=F ILEOUT , TYPE= ' NEW' |
OPEN (UNTTwIN, RAME=FILEIN, TYFE='OLD’ )

C
CHresstiirite output file header
WRITE(OUT,11} TITLE,LABEL
c
Crresseirind displacement section of output (.£06) file; sort by subcase
100 READ(IN,1,END=300) CARD
IF (CARD(113:116).EQ.‘CASE’) READ{CARD(118:121),2) SC
IF (CARD(46:68).EQ.'DI S PLACEMENT’) THEN
DO I =1,PTS
DoJ=1,0F
IF (SC.EQ.SUB(I,J}) THEN
SCI =1
5CI = J
GO TO 200
ENDIF
ENDDO
ENDOO
ENDIF
GO TO 100

20

Monte-D FORTRAN Code

(for Section 4.0)

c
Cesrtettrind displacement value for desired grid
200 READ(IN,1,END=300) CARD
IF (CARD(113:116).8Q. CASE’) THEN
READ(CARD(118:121),2) sC
IF (SC.NE.SUB(SCI,SCJ)) GO TO 100
ENDIF
IF (CARD(20:22).PQ.’ G ’} THEN
READ{CARD(9:14),3) GIDM™MP
IF (GIDTMP.EQ.GID) THEN
READ(CARD( (12+({15%DFR) ) : {24+(15*DFR)} ) ),4) C(SCI,SCI)
ENDIF
ENDIF
GO TO 200
c
CHesdettInput data reading completed
300 CONTINVE

<
Creaneenceale matrix by tolerances
Do I = 1,PTS
DO J = 1,0F
C(1,3) = C(I,J)*TOL(J)

ENDDO
<
Ceeranetperform Monte Carlo randomization on matrix: C{POINT,DOF}
Cridestitoop for random cases
0 Q= 1,NIC
Chernsssscale by random numbers
DO I = 1,PTS
DO J = 1,DF
CALL RANGAU(RNDM, SD)
- CP(I,J) = C(XI,J)*RNDM
ENDDO
ENDODO
Crevterapddd terms for random case
DISP = 0.D0
DO I = 1,PTS
DO J = 1,DF
DISP = DISP + CP(I1,J)
ENDDO
ENDDO
Ce#sesriyrite output data
WRITE(OUT,12) Q,DISP
Chastatspnd random cases
ENDOO
C
CrersstsFormat statements
1 FORMAT(A132)
2 FORMAT(I4)
3 FORMAT(I6)
4 FORMAT(E13.6)
11 FORMAT(A60,/,A50,//,T4, 'CASE’ ,T11, ' DISPLACEMENT * o/
1 T4, ——,T11," ‘)
12 FORMAT(T4,14,T11,1PE13.6)
[
STOP
END
SUBROUTINE RANGAL(RNIM, SD}
[ b ine RANGAU g tes a Gaussian random number batween
c the tanges ~1. to +1.
C-
Céesrstapyssed variable
INTEGER SD
REAL*8 RNDM

Ceewravsincal variables
REAL*8 RN1,RN2,RN3,EPS,MN,SIG,RPD

Ceesessttnitialize variables
EPS = 1.0D-10
MN = 0.D0
SIG = 1.D0/3.0D0
RPD = (DACOS(~1.D0)}/180.D0
c
C4#s4s4pick random numbers (square) and form Gaussian
100 RN1 = RAN(SD}
RN2 = RAN(SD}
RN3 = RAN(SD)
SGN = (~1.DO)**(INT{10.DO*RN1))
IF (RN3.EQ.0.0) RN3 = EPS
RNI¥M = MN 4 SGN*SIG*DCOS{360.D0*RPD*RN2)*
1 DSQRT(~2.D0 *DLOG(RN3 ) )
IF (DABS({RNDM).GT.1.0D0) GO TO 100

RETURN
END



APPENDIX B.

NASTRAN MESH
$

ID STONE,MARK
TIME 100

SOL 101

CEND

$

TITLE = MONTE CARLO LOAD VARIATION SENSITIVITY
SUBTITLE = EXAMPLE BEAM PROBLEM --— SECTION 4.0
LABEL = DISPLACEMENT OUTPUT FOR A UNIT APPLIED LOAD

$
SPC = 1
$
SUBCASE 1

LABEL = LOAD AT POINT 3

DISP = ALL
1OAD = 1

SUBCASE 2

LABEL = LOAD AT POINT 6

DISP = ALl
LOAD = 2
$
SUBCASE 3

LABEL = LOAD AT POINT 9

DISP = ALL
LOAD = 3
$

MSC/NASTRAN Analysis (for Section 4.0)

$
PARAM, POST, 0
$

EGRID,1,,0.,0.
EGRID, 2,,10.,0.
$

GRIDG,1,,,10,-1,-2
GRIDU,1,1

PBEAM,1,1,0.01,8.33-6,8.33-6
MAT1,1,1.47,,0.3

$

ENDDATA

LOAD AT POINT 3

POINT ID.

Homas@wbwnu
PR RAANQQ

-

:
%
2
5

POINT ID. TYPE
1 6
2 6
3 6
4 G
5 G

® G
7 G
8 6
9 G

10 G

un G

LOAD AT POINT 9

POINT ID.

HOW@\J@U‘&UNH
RO RO0ROOD

-

TYPE

:

CO0O00OOTOO00 QOO0 O0O0OCO0O0O0O0

CO0OO00DO0OO00O0

PR
OO0 O0O0OHOO0O0OO

cooooooo00bD

<l
s

|
-

3
=

SUBCASE 1
DISPLACEMENT VECTOR
T ) Rl R2 R3
0.0 0.0 0.0 0.0 5.762305E-02
5.604321E-02 0.0 0.0 0.0 5.282113E-02
1.0248268-01 0.0 0.0 0.0 3.841536E-02
1.316891E-01 0.0 0.0 0.0 2.040816E-02
1. 440888E-0 0.0 0.0 0.0 4.801921E-03
0.0 0.0 0.0 ~-8.403361E-03
1.280720E-01 0.0 0.0 0.0 -1.920768E~02
1.044574E-01 0.0 0.0 0.0 -2.761104E-02
7.363985E-02 0.0 0.0 0.0 -3.361344£-02
3.802041E-02 0.0 0.0 0.0 —3.721489E-02
0.0 0.0 0.0 0.0 ~3.841536E-02
SUBCASE 2
DISPLACEMENT VECTOR
T2 L) R1 R2 R3
0.0 0.0 0.0 0.0 7.503001E-02
7.404261E-02 0.0 0.0 0.0 7.202881E-02
1.420828E-01 0.0 6.0 0.0 6.302521E-02
1.981182E-01 0.0 0.0 0.0 4.801921E-02
2.361464E-01 0.0 0.0 0.0 2.701080E-02
[2:501650E-01] o©.0 0.0 0.0 4.427882E-16
2.361464E01 0.0 0.0 0.0 ~2.701080E-02
1.981182E-01 0.0 0.0 0.0 ~4.801921E-02
1.420828E-01 0.0 0.0 0.0 —-6.302521E-02
7.404261E-02 0.0 0.0 0.0 —7.202881E-02
0.0 0.0 0.0 0.0 —7.503001E-02
SUBCASE 3
DISPLACEMENT VECTOR
T2 T3 RL RrR2 R3
0.0 . . . 3.841536E-02

3.802041E-02
7.363985E-02
1.044574E-01
1.280720E-01

[-i08z8e01]
1.440888E-01
1.316891E-01
1.024826E-01
5.604321E-02
0.0

3.721489e-02
3.361344E-02
2.761104E-02
1.920768E-02
8.403361E-03
-4.801921E-03
-2.040816E-02
~3.841536E-02
-5.282113E-02
-5.762305E-02
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