ACCURATE ENFORCED MOTION ANALYSIS USING MSC/NASTRAN SUPERELEMENTS

Christopher C. Flanigan SDRC Engineering Services Division, Inc. San Diego, California

ABSTRACT

The standard approach for performing an enforced motion analysis in MSC/NASTRAN uses very large masses and forces to obtain the desired motion at selected locations. This approach can lead to inaccurate results if the large masses are too large or too small.

An alternate approach for enforced motion analysis is presented in this paper. The alternate method uses the Craig-Bampton superelement capability in MSC/NASTRAN to form the required matrices for a direct solution of the equations of enforced motion. The need for large masses is eliminated, resulting in improved accuracy. In addition, the enforced motion analysis is performed directly, eliminating the need for Lagrange multipliers.

A rigid format alter for performing the new enforced motion analysis method is included in the paper. An example problem is presented to demonstrate the new method and to illustrate some of the pitfalls of enforced motion analysis.

1994 MSC/NASTRAN World Users Conference Orlando, Florida June 20-24, 1994

ACCURATE ENFORCED MOTION ANALYSIS **USING MSC/NASTRAN SUPERELEMENTS**

Christopher C. Flanigan SDRC Engineering Services Division, Inc. San Diego, California

Nomenclature

Acronyms

DOF	Degrees of freedom
DMAP	Direct matrix abstraction program
DRM	Data recovery matrix
MSC	MacNeal-Schwendler Corporation
NASTRAN	NASA Structural Analysis Program

Matrices

Damping
Identity
Stiffness
Mass
Applied loads
Pseudo loads
Displacement
Velocity
Acceleration

Subscripts

f	f-set (free DOF: g - m - s)
g	g-set (all DOF)
m	m-set (DOF constrained by MPC)
q	q-set (component mode DOF)
S	s-set (DOF restrained by SPC)
t	t-set (physical boundary DOF)

Introduction

Enforced motion transient analysis is a very important capability for the design of dynamic components. In enforced motion transient analysis (also known as "base shake"), motion histories are prescribed at selected locations in a component. The responses at other locations caused by the prescribed motion are calculated by a special transient analysis. Typical applications for enforced motion transient analysis include spacecraft coupled to a launch vehicle and road vehicles traveling over rough terrain. The base shake method is often used to perform trade studies for modified components using the interface motion histories from a previous system coupled transient analysis.

MSC/NASTRAN has the ability to perform enforced motion analysis using the "seismic mass" approach [1]. In this method, extremely large masses or inertias are placed at the enforced motion locations. Extremely large forces are applied to the large masses to cause the desired motion histories. The seismic mass approach has traditionally been prone to numerical error. If the seismic masses are not sufficiently large, dynamic feedback from the component causes the motion of the seismic masses to deviate from the prescribed histories. If the seismic masses are too large, numerical ill-conditioning can occur in the mass matrix and eigensolution.

This paper presents an alternate formulation for enforced motion transient analysis. The alternate method is based on a simple explicit algorithm that eliminates the need for seismic masses, thereby improving the accuracy of the enforced motion solution. The alternate method is implemented using superelement methods in MSC/NASTRAN to easily generate the required matrices. The alternate method is illustrated using an example problem. Finally, some of the limitation of enforced motion analysis are presented.

Theory

The derivation of the alternate method for enforced motion begins with the component equations of motion:

$$\mathbf{K}_{\mathrm{ff}} \mathbf{X}_{\mathrm{f}} + \mathbf{B}_{\mathrm{ff}} \dot{\mathbf{X}}_{\mathrm{f}} + \mathbf{M}_{\mathrm{ff}} \ddot{\mathbf{X}}_{\mathrm{f}} = \mathbf{P}_{\mathrm{f}} \tag{1}$$

Using MSC/NASTRAN superelement methodology [2], the equations of motion can be reduced from the f-set to the a-set:

$$\begin{bmatrix} K_{tt} & 0 \\ 0 & K_{qq} \end{bmatrix} \begin{Bmatrix} U_{t} \\ U_{q} \end{Bmatrix} + \begin{bmatrix} B_{tt} & B_{tq} \\ B_{qt} & B_{qq} \end{bmatrix} \begin{Bmatrix} \dot{U}_{t} \\ \dot{U}_{q} \end{Bmatrix} + \begin{bmatrix} M_{tt} & M_{tq} \\ M_{qt} & M_{qq} \end{bmatrix} \begin{Bmatrix} \ddot{U}_{t} \\ \ddot{U}_{q} \end{Bmatrix} = \begin{Bmatrix} P_{t} \\ P_{q} \end{Bmatrix}$$
(2)

The form of (2) assumes that standard MSC/NASTRAN superelement capabilities are used. Since MSC/NASTRAN uses an enhanced version of the Craig-Bampton modal synthesis method [3], the off-diagonal partitions of the stiffness matrix are null. The form of (2) would be different if any other modal synthesis method were used such as the MacNeal-Rubin residual flexibility method [4,5].

The equations for enforced motion analysis can be significantly simplified using the following assumptions and limitations:

- Component modal damping only $(B_{tt} = B_{tq} = 0)$
- No internally applied forces $(P_q = 0)$

Using these assumptions, (2) can be rewritten as:

$$\begin{bmatrix} \mathbf{K}_{tt} & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_{qq} \end{bmatrix} \begin{Bmatrix} \mathbf{U}_{t} \\ \mathbf{U}_{q} \end{Bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{B}_{qq} \end{bmatrix} \begin{Bmatrix} \dot{\mathbf{U}}_{t} \\ \dot{\mathbf{U}}_{q} \end{Bmatrix} + \begin{bmatrix} \mathbf{M}_{tt} & \mathbf{M}_{tq} \\ \mathbf{M}_{qt} & \mathbf{M}_{qq} \end{bmatrix} \begin{Bmatrix} \ddot{\mathbf{U}}_{t} \\ \ddot{\mathbf{U}}_{q} \end{Bmatrix} = \begin{Bmatrix} \mathbf{P}_{t} \\ \mathbf{0} \end{Bmatrix}$$
(3)

The lower partition of (3) can be written as:

$$K_{qq} U_q + B_{qq} \dot{U}_q + M_{qt} \ddot{U}_t + M_{qq} \ddot{U}_q = 0$$
 (4)

or

$$K_{qq} U_q + B_{qq} \dot{U}_q + M_{qq} \ddot{U}_q = -M_{qt} \ddot{U}_t$$
 (5)

The accelerations of the t-set DOF are prescribed using the values from the original coupled loads analysis. This relationship for the t-set accelerations can be added to (5) to form the equations of enforced motion for the a-set DOF:

$$\begin{bmatrix} 0 & 0 \\ 0 & \mathbf{K}_{qq} \end{bmatrix} \begin{Bmatrix} \mathbf{U}_{t} \\ \mathbf{U}_{q} \end{Bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{B}_{qq} \end{bmatrix} \begin{Bmatrix} \dot{\mathbf{U}}_{t} \\ \dot{\mathbf{U}}_{q} \end{Bmatrix} + \begin{bmatrix} \mathbf{I}_{tt} & 0 \\ 0 & \mathbf{M}_{qq} \end{bmatrix} \begin{Bmatrix} \ddot{\mathbf{U}}_{t} \\ \ddot{\mathbf{U}}_{q} \end{Bmatrix} = \begin{Bmatrix} \mathbf{P}_{t}' \\ \mathbf{P}_{q}' \end{Bmatrix}$$
(6)

where

$$\begin{Bmatrix} \mathbf{P}_{\mathbf{q}}^{\prime} \\ \mathbf{P}_{\mathbf{q}}^{\prime} \end{Bmatrix} = \begin{Bmatrix} \ddot{\mathbf{U}}_{\mathbf{t}} \\ -\mathbf{M}_{\mathbf{q}\mathbf{t}} \ddot{\mathbf{U}}_{\mathbf{t}} \end{Bmatrix}$$
(7)

(6) is in the standard form for a modal transient analysis. The solution of (6) will be very efficient and extremely accurate if modal (uncoupled) damping is used. Non-diagonal damping will couple the equations of motion, thereby requiring a longer a slightly less accurate solution using the Newmark-Beta method.

Internal responses such as element forces and stresses can be recovered using standard MSC/NASTRAN data recovery capabilities. Alternatively, better efficiency and accuracy can be obtained using data recovery matrix methods [6].

Implementation

The alternate method for enforced motion analysis is implemented in MSC/NASTRAN using a rigid format alter. The rigid format alter for SOL 72 is included in Appendix A To use the alternate method, the user must comply with the following requirements:

- The enforced motion component must be defined as a single superelement or as a multiple superelements assembled into a single "collector" superelement.
- The enforced motion DOF must be exterior to the component.
- Fixed-interface component modes must be calculated (do not use free or mixed-interface modes).
- The residual structure must include only the exterior DOF of the upstream component. No additional grids or elements may be added to the residual structure.
- The enforced motion DOF must be listed on SUPORT entries in the residual structure.
- The acceleration histories for the t-set DOF must be defined as "applied loads" using TABLED1 cards and related input.
- Component modal damping may be defined using a TABDMP1 table.
- Standard Case Control and Bulk Data input must be defined for performing a modal transient analysis

The rigid format alter forms the required matrices for the enforced acceleration transient analysis (6,7). A modal transient analysis is performed using the prescribed accelerations and the user-specified modal damping. If needed, nonzero initial conditions could be added by two methods:

- Special rigid format alters [7,8]
- Changing the approach code from 'MODES' to 'DIRECT' for the TRD1 transient response DMAP module and manually defining initial conditions using IC and TIC entries.

The use of the rigid format alter and the required user operations are illustrated in the following section.

Example Problem

The example problem was a typical aerospace application including a spacecraft coupled to a rocket

motor as shown in Figure 1. The system was excited by thrust transients applied to the rocket nozzle. A baseline coupled loads analysis was performed using standard methods to obtain the accelerations at the spacecraft interface. The interface accelerations were converted to TABLED1 statements to perform the enforced motion analysis.

The input file for the enforced motion analysis of the spacecraft is shown in Figure 2. The spacecraft was defined as a single superelement with the interface DOF exterior to the superelement. Fixed-interface component modes were calculated to 75 Hz. 1% modal damping for the component modes was defined using a TABDMP1 table. The acceleration histories were defined using DLOAD, TLOAD1, DAREA, and TABLED1 statements.

The results from the enforced motion analysis were compared to those of the baseline coupled loads analysis. In addition, a "seismic mass" analysis was performed using the standard capabilities in MSC/NASTRAN. The acceleration histories of the enforced motion DOF exactly matched the histories prescribed from the coupled loads analysis as shown in Figure 3 and Table 1. The interior accelerations were reasonably accurate as shown in Table 2. However, there were substantial variations in the element loads as shown in Table 3. For most of the element forces, similar results were obtained from the seismic mass and enforced acceleration methods. The reasons for the differences between the standard analysis and the enforced motion analyses are discussed in the following section.

Limitations

While this paper presents an alternate method for more accurate enforced motion analysis, there are basic accuracy limitations of the enforced motion approach. These limitations are especially significant for coupled system solutions such as the example problem shown in Figure 1.

As shown in Tables 2 and 3, the interior results from the enforced motion analysis did not match those from the baseline coupled analysis even though there were no changes to the spacecraft model. For some of the element loads, the differences were extremely large. There were three major causes for the response differences. First, the modal damping of 1% applied to the system modes is not numerically equivalent to 1% damping applied to the component modes. The differences between system and component mode damping can be even more significant when the damping is higher.

The second cause of differences between coupled and enforced motion results is the modal content of the two problems. For the example problem, component modes were calculated to 75 Hz, and system modes were retained to 50 Hz. When calculating system modes, there is always truncation of the component mode information whenever the system mode frequency limit is below the component mode frequencies. However, all component modes are retained for the enforced motion analysis. Therefore, component mode truncation effects may cause the coupled and enforced motion results to be different even though there are no differences in the component models.

The third cause of differences between coupled and enforced motion results is the data recovery equations. For the standard analysis, data recovery was performed using the mode displacement method and the system modes. However, for the enforced motion analyses, the data recovery equations are similar to component data recovery matrices [6]. As noted in [6], there can be substantial differences in results calculated using mode displacement and component DRM methods.

Because of the three sources of differences between coupled and enforced motion results, it is recommended that enforced motion analysis be used with care. Special attention should be placed on accurate data recovery methods if internal loads are required.

A new class of analysis methods has recently been developed to try to address the differences between component and system results. These new methods, called Reanalysis [9,10], attempt to obtain the accuracy of the coupled system analysis using techniques similar to an enhanced base shake analysis. Initial results using these methods appear promising. Eventually, when greater experience is developed, Reanalysis methods may replace base shake methods for component analysis.

Conclusions

An alternate approach for performing enforced motion transient analysis was developed. The alternate method uses an explicit formulation that eliminates the need for large seismic masses at the enforced motion DOF. The alternate method was implemented using a rigid format alter in MSC/NASTRAN. The accuracy of the alternate method is better than the standard seismic mass algorithm in MSC/NASTRAN. However, enforced motion analysis should always be used with caution because of the accuracy differences between component and system transient analysis.

References

- MSC/NASTRAN Application Manual, Volume 1, Section 2.7, "Automated Enforced Motion in Dynamic Analysis Base Excitation,"
 The MacNeal-Schwendler Corporation, Los Angeles, California.
- MSC/NASTRAN Handbook for Superelement Analysis, The MacNeal-Schwendler Corporation, Los Angeles, California.
- Craig, R.R., and Bampton, M.C.C., "Coupling of Substructures for Dynamic Analysis," <u>AIAA</u> <u>Journal</u>, Vol. 6, No. 7, July 1968.
- MacNeal, R.H., "A Hybrid Method of Component Mode Synthesis," <u>Computers & Structures</u>, 1971, pp. 581-601.
- Rubin, S., "Improved Component Mode Representation for Structural Dynamic Analysis,"
 <u>AIAA Journal</u>, Vol. 13, No. 8, August 1975,
 pp. 995-1006.
- Flanigan, C.C., "Efficient and Accurate Procedures for Calculating Data Recovery Matrices," 1989 MSC/NASTRAN World Users

- Conference, Los Angeles, California, March 13-17, 1989.
- Flanigan, C.C., "Methods for Calculating and Using Modal Initial Conditions in MSC/NASTRAN," 1980 MSC/NASTRAN World Users Conference, Los Angeles, California, March, 1980.
- Abdallah, Ayman A., A.R. Barnet, O.M. Ibrahim, R.T. Manella, "Solving Modal Equations of Motion with Initial Conditions Using MSC/NASTRAN, Part 1: Implementing Exact Mode Superposition," 1993 MSC/NASTRAN World Users Conference, Washington, D.C., May 24-28, 1993.
- 9. Blelloch, P., and Flanigan, C., "A Time Domain Approach for Spacecraft Reanalysis," 33rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Dallas, TX, April 13-15, 1992.
- Trubert, M., and Peretti, L., "A Cost-Effective Component Modes Analysis for Shuttle Payloads Using a Combination of Frequency Domain and Time Domain Approaches, Paper 85-0733, AIAA/ASME/ASCE/AHS 26th SDM Conference, Orlando, Florida, April 15-17, 1985.

Figure 1. The example problem included a spacecraft coupled to a rocket motor.

```
ASSIGN MASTER='gpsc_enfa.MASTER'
ASSIGN DBALL = 'gpsc_enfa.DBALL'
ASSIGN USRSOU='gpsc_enfa.USRSOU'
ASSIGN USROBJ='gpsc_enfa.USROBJ'
DBSETDEL USRSOU, USROBJ
$
ID
        GPSC, ENFA
SOL
        72
                $ Modal transient analysis
TIME
        30
                $ 30 CPU minutes
DIAG
                $ Print matrix trailers
        8
COMPILE SOL72, SOUIN=MSCSOU, NOLIST, NOREF
INCLUDE 'rf72d339.v67'
CEND
TITLE
         =GENERAL PURPOSE SPACECRAFT
SUBTITLE =ENFORCED ACCELERATION TRANSIENT ANALYSIS
ECHO = NONE
                        $ Do not print bulk data deck
SEALL = ALL
                        $ Required for SOL 72
SUBCASE 10
  SUPER 10
                        $ GPSC superelement
  METHOD = 75
                        $ Component modes to 75 Hz
SUBCASE 1000
  LABEL = RESIDUAL STRUCTURE
  METHOD = 75 $ Component modes to 75 Hz
  TSTEP = 1
                       $ Numerical integration data
  DLOAD = 1
                       $ Dynamic loads
  SDAMP = 1
                       $ Modal damping
OUTPUT (XYPLOT)
SEPLOT 0
INCLUDE 'gpsy_acce.xyp'
SEPLOT 10
INCLUDE 'gpsc_acce.xyp'
INCLUDE 'gpsc_elfor.xyp'
BEGIN BULK
   PARAMETER CARDS
Ŝ
PARAM AUTOSPC YES
PARAM
       GRDPNT 0
PARAM
       USETPRT 0
PARAM
       WTMASS
               .00259
$
   Deactivate DDRMM and MODACC
Ŝ
PARAM
       DDRMM.
                -1
PARAM
        MODACC
```

(page 1 of 3)

Figure 2. The above input deck was used to perform the enforced acceleration transient analysis.

```
$
   EIGENVALUE SOLUTION DATA
$
$
EIGRL
        75
                          75.
$
   GPSC BULK DATA
$
INCLUDE 'gpsc.blk'
INCLUDE 'gpsc.prp'
INCLUDE 'gpsc.sup'
   ENFORCED ACCELERATION DATA
$
$
   Define the enforced acceleration DOF (T-set of upstream SE)
($
SUPORT
         44
                 123456
SUPORT
         45
                 123456
                 123456
SUPORT
         48
SUPORT
         49
                 123456
   Enforced accelerations (24 enforced accel DOF)
DLOAD
         1
                 1.
                          1.
                                   441
                                           1.
                                                    442
                                                            1.
                                                                     443
                                   445
                                           1.
                                                    446
                                                                     451
         1.
                 444
                          1.
                                                            1.
                          1.
                                   453
                                           1.
         1.
                 452
                                                    454
                                                            1.
                                                                     455
                                   481
                                                    482
                                                                     483
         1.
                 456
                          1.
                                           1.
                                                            1.
         1.
                 484
                                   485
                                           1.
                                                    486
                                                            1.
                                                                     491
                          1.
         1.
                 492
                          1.
                                   493
                                           1.
                                                    494
                                                            1.
                                                                     495
                 496
         1.
                          DELAY
                                   TYPE
                                           TABLED1
         SID
                 DAREA
                                           441
TLOAD1 441
                 441
TLOAD1
        442
                 442
                                           442
                                           443
TLOAD1
        443
                 443
TLOAD1
        444
                 444
                                           444
TLOAD1
        445
                 445
                                           445
TLOAD1 446
                                           446
                 446
         451
                  451
                                           451
TLOAD1
                                           452
TLOAD1
        452
                  452
TLOAD1
         453
                  453
                                           453
        454
                                           454
TLOAD1
                  454
TLOAD1
        455
                  455
                                           455
TLOAD1 456
                  456
                                           456
TLOAD1 481
                  481
                                           481
TLOAD1
         482
                  482
                                            482
TLOAD1
         483
                  483
                                            483
TLOAD1
         484
                  484
                                            484
TLOAD1
                  485
                                            485
         485
                  486
                                            486
TLOAD1
         486
```

(page 2 of 3)

Figure 2. The above input deck was used to perform the enforced acceleration transient analysis.

```
491
                                              491
TLOAD1
         491
                                              492
TLOAD1
         492
                  492
                                              493
TLOAD1
         493
                  493
                                              494
TLOAD1
         494
                  494
                                              495
                  495
TLOAD1
         495
                                              496
TLOAD1
                  496
         496
$
         SID
                                     S
                  GRID
                            DOF
                            1
                                     1.
DAREA
         441
                  44
DAREA
                  44
                            2
                                     1.
         442
                            3
                  44
                                     1.
DAREA
         443
                  44
                            4
                                     1.
DAREA
         444
DAREA
                  44
                            5
                                     1.
         445
                            6
DAREA
         446
                   44
                                     1.
                                     1.
                   45
                            1
DAREA
         451
                                     1.
DAREA
         452
                   45
                            2
                   45
                            3
                                     1.
DAREA
         453
DAREA
         454
                   45
                                     1.
DAREA
         455
                   45
                            5
                                     1.
                            6
                                     1.
         456
                   45
DAREA
$
DAREA
         481
                   48
                            1
                                     1.
                            2
                                     1.
DAREA
         482
                   48
                            3
                                     1.
DAREA
         483
                   48
                                     1.
         484
                   48
                            4
DAREA
                            5
                                     1.
         485
                   48
DAREA
                            6
                                     1.
DAREA
         486
                   48
                            1
                                     1.
DAREA
         491
                   49
                            2
                                     1.
DAREA
         492
                   49
                   49
                            3
                                     1.
DAREA
         493
DAREA
         494
                   49
                            4
                                     1.
DAREA
         495
                   49
                            5
                                     1.
                                     1.
DAREA
         496
                   49
INCLUDE 'enfacce.tbl'
   TSTEP DATA
$
$
                             .001
                   500
                                     1
TSTEP
         1
$
   MODAL DAMPING DATA
$
TABDMP1 1
                   CRIT
                                               ENDT
                   .01
                            100.
                                      .01
          0.
ENDDATA
```

(page 3 of 3)

Figure 2. The above input deck was used to perform the enforced acceleration transient analysis.

Figure 3. The enforced accelerations at the boundary DOF were identical to those from the standard coupled analysis.

Table 1. Boundary accelerations.

Grid	DOF	Standard	Enforced	Enf. Accel.	Seismic	Seis. Mass
		Analysis	Accel.	Difference	Mass	Difference
44	1	-0.031	-0.031	0.0%	-0.031	0.0%
44	2	0.032	0.032	0.0%	0.032	0.0%
44	3	0.666	0.666	0.0%	0.666	0.0%
44	4	-0.002	-0.002	0.0%	-0.002	0.0%
44	5	0.003	0.003	0.0%	0.003	0.0%
44	6	0.000	0.000	0.0%	0.000	0.0%
45	1	-0.040	-0.040	0.0%	-0.040	0.0%
45	2	-0.039	-0.039	0.0%	-0.039	0.0%
45	3	0.662	0.662	0.0%	0.662	0.0%
45	4	0.004	0.004	0.0%	0.004	0.0%
45	5	-0.005	-0.005	0.0%	-0.005	0.0%
45	6	0.001	0.001	0.0%	0.001	0.0%
48	1	-0.038	-0.038	0.0%	-0.038	0.0%
48	2	-0.038	-0.038	0.0%	-0.038	0.0%
48	3	0.662	0.662	0.0%	0.662	0.0%
48	4	-0.003	-0.003	0.0%	-0.003	0.0%
48	5	0.004	0.004	0.0%	0.004	0.0%
48	6	0.000	0.000	0.0%	0.000	0.0%
49	1	-0.030	-0.030	0.0%	-0.030	0.0%
49	2	0.034	0.034	0.0%	· 0.034	0.0%
49	3	0.712	0.712	0.0%	0.712	0.0%
49	4	0.003	0.003	0.0%	0.003	0.0%
49	5	0.002	0.002	0.0%	0.002	0.0%
49	6	0.000	0.000	0.0%	0.000	0.0%

Table 2. Interior accelerations.

Grid	DOF	Standard	Enforced	Enf. Accel.	Seismic	Seis. Mass
		Analysis	Accel.	Difference	Mass	Difference
1	1	0.103	0.100	-2.7%	0.100	-2.7%
1	2	0.105	0.101	-3.5%	0.101	-3.5%
1	3	0.698	0.677	-3.0%	0.677	-3.0%
18	1	0.135	0.138	2.6%	0.138	2.6%
18	2	0.133	0.133	-0.7%	0.133	-0.7%
18	3	0.665	0.662	-0.4%	0.662	-0.4%
19	1	0.068	0.068	-0.9%	0.068	-0.9%
19	2	0.061	0.063	2.5%	0.063	2.5%
19	3	0.665	0.665	0.0%	0.665	0.0%
30	1	0.056	0.055	-2.4%	0.055	-2.4%
30	2	0.067	0.065	-3.0%	0.065	-3.0%
30	3	0.700	0.697	-0.4%	0.697	-0.4%
40	1	0.080	0.080	0.3%	0.080	0.3%
40	2	0.067	0.065	-2.9%	0.065	-2.9%
40	3	0.790	0.771	-2.4%	0.771	-2.4%

Table 3. Interior element forces.

Element	Item	Standard	Enforced	Enf. Accel.	Seismic	Seis. Mass
	Code	Analysis	Accel.	Difference	Mass	Difference
17	2	-700.9	-636.2	-9.2%	-636.4	-9.2%
17	3	800.4	778.4	-2.7%	754.0	-5.8%
17	4	60.3	-84.0	-239.2%	-96.3	-259.7%
17	5	-83.6	176.1	-310.6%	225.9	-370.2%
17	6	-63.3	-50.0	-21.0%	-48.8	-22.9%
17	7	73.6	66.0	-10.3%	60.5	-17.8%
17	8	-435.7	-408.6	-6.2%	-408.7	-6.2%
17	9	-11.7	-11.7	0.6%	-11.8	0.8%
18	2	-1375.2	-1320.3	-4.0%	-1320.0	-4.0%
18	3	-1368.4	-1354.4	-1.0%	-1355.9	-0.9%
18	4	307.4	-274.2	-189.2%	-272.1	-188.5%
18	5	-305.7	280.7	-191.8%	282.6	-192.4%
18	6	-140.2	-126.9	-9.5%	-126.9	-9.5%
18	7	-138.4	-136.3	-1.6%	-136.5	-1.3%
18	8	-230.8	-204.6	-11.3%	-204.6	-11.3%
18	9	-33.8	-34.1	1.1%	-34.1	1.1%
37	8	-300.3	-261.9	-12.8%	-262.0	-12.8%
40	8	-300.2	-262.7	-12.5%	-262.9	-12.4%
47	2	-2646.8	-2343.5	-11.5%	-2343.7	-11.5%
47	3	243.1	243.3	0.1%	243.6	0.2%
47	6	-220.6	-195.3	-11.5%	-195.3	-11.5%
47	7	20.3	20.3	0.1%	20.3	0.2%
47	8	18.5	19.4	4.9%	19.4	4.9%
48	2	392.8	361.3	-8.0%	361.3	-8.0%
48	3	-15.7	-15.7	-0.1%	-15.7	0.0%
48	4	-2585.1	-2289.1	-11.5%	-2289.2	-11.4%
48	5	232.2	232.5	0.1%	232.8	0.2%
48	6	240.7	214.5	-10.9%	214.5	-10.9%
48	7	-20.7	-20.7	0.1%	-20.7	0.2%
48	8	23.6	21.0	-11.1%	21.0	-11.2%
53	8	296.5	264.6	-10.8%	264.6	-10.8%
56	8	296.8	264.9	-10.7%	265.0	-10.7%
75	8	-47.0	-49.5	5.4%	-49.5	5.4%
76	8	-25.5	-30.8	21.0%	-30.8	21.0%
77	8	-28.2	-20.7	-26.8%	-20.8	-26.3%
78	8	-47.5	-32.5	-31.6%	-32.5	-31.6%
79	8	-71.0	-35.9	-49.4%	-36.0	-49.4%
80	8	-60.0	-25.8	-57.1%	-25.7	-57.2%

APPENDIX A

Rigid Format Alter for SOL 72

```
ENFORCED ACCELERATION TRANSIENT ANALYSIS
   Rigid Format 72 - Modal Transient Analysis with Superelements
  MSC/NASTRAN Version 67
   This alter performs an enforced acceleration transient analysis.
   See the referenced technical paper for more information.
***
              "Accurate Enforced Motion Analysis using
   Reference:
               MSC/NASTRAN Superelements, " 1994 MSC/NASTRAN
               World User's Conference, Orlando, Florida,
               June 20-24, 1994.
  Requirements to use this alter -
******
  EXECUTIVE DECK:
    COMPILE SOL72, SOUIN=MSCSOU, NOLIST, NOREF
     Include this alter immediately before the "CEND" card.
$$$$$
   CASE CONTROL DECK:
     Standard requests for a modal transient analysis (METHOD,
     DLOAD, TSTEP, and SDAMP).
     The METHOD requests for the upstream superelement and the
     residual structure should specify the same frequency range.
   BULK DATA DECK:
     The physical exterior (T-set) DOF of the component must be
     entered on SUPORT statements.
The accelerations at the component T-set DOF must be defined
     as "applied loads".
     The DDRMM and mode acceleration options must be deactivated.
  ______
   EXAMPLE NASTRAN DECK:
             ENF, ACCE
     ID
             72
     SOL
     TIME
             30
     DIAG
     COMPILE SOL72, SOUIN=MSCSOU, NOLIST, NOREF
     INCLUDE RF72D339
              = GENERAL PURPOSE SPACECRAFT
     SUBTITLE = ENFORCED ACCELERATION TRANSIENT ANALYSIS
     SEALL
              = AT.T.
                                 $ All superelement operations
     SUBCASE 10
       SUPER 10
       LABEL = GENERAL PURPOSE SPACECRAFT
       METHOD = 75
                                 $ Component modes to 75 Hz
     SUBCASE 10000
       LABEL = RESIDUAL STRUCTURE
                                 $ Component modes to 75 Hz
$ Dynamic loads (enf. accel.)
       METHOD = 75
       DLOAD = 1
       TSTEP
                                 $ Integration steps
```

```
SDAMP = 1
$ Damping for component modes
      BEGIN BULK
      . Bulk data for structural model
      $ Deactivate DDRMM and MODACC
      PARAM, DDRMM, -1
      PARAM, MODACC, -1
      $ Enforced motion DOF
      SUPORT, 44, 123456
      SUPORT, 45, 123456
      SUPORT, 48, 123456
      SUPORT, 49, 123456
      $ Define enforced accelerations
     DLOAD, 1, 1., 1., 1, 1., 2, 1., 3
      ,1.,4,1.,5,1.,6
     TLOAD, 1, 1, , , 1
     DAREA, 1, 100, 1, 1.
      TABLED1,1
      ,0.,0.,.002,.106,.004,.327,.006,.763
      . Remaining enforced acceleration data
      $ 1% damping on component modes
     TABDMP1,1,CRIT
      ,0.,.01,100.,.01,ENDT
       Integration steps
     TSTEP, 1, 1000, .001, 1
     ENDDATA
$$$$
   HISTORY DOCUMENTATION:
                 Chris Flanigan
     07-Feb-94
       -Original version
$2345678901234567890123456789012345678901234567890123456789012
  Form "classic" Craig-Bampton component matrices
         834 $ V67
,,CMLAMA/CMLAMAT/-1 $
CMLAMAT,,,,/MQQDIAG1,/1/4 $
ALTER
                                                      After LABEL LNORC
LAMX
                                                      Build matrix from LAMA
MATMOD
                                                      Extract Gen. M (diag)
          CMLAMAT,,,,/KQQDIAG1,/1/5 $
,/QNULL/7/NOQSET/1 $
MATMOD
                                                      Extract Gen. K (diag)
MATGEN
                                                       Q-set null column
                                                      Add or truncate rows
Add or truncate rows
ADD
          QNULL, MQQDIAG1/MQQDIAG $
ADD
          QNULL, KQQDIAG1/KQQDIAG $
                                                      Form into full matrix
Form into full matrix
MATMOD
          MQQDIAG,,,,/MQQ,/28 $
          KQQDIAG,,,,/KQQ,/28 $
USET/VAQT/'A'/'Q'/'T' $
,/OQNULL/7/NOOSET/NOQSET $
MATMOD
VEC
                                                      A = Q / T
O x Q null matrix
MATGEN
ADD
          OQNULL, PHIOZ/PHIOQ $
                                                       Add or trunc columns
          PHIOO,,,,VAQT,/GOAQ/1 $
MOO,GOAT,MOA/MOA1 $
MERGE
                                                       Column merge
MPYAD
                                                       Static mass coupling
                                                      Mass coupling matrix
MPYAD
          GOAQ, MOA1, /MQT/1 $
TRNSP
          MOT/MTO $
                                                       Transpose
```

```
MQQ,,,,VAQT,/MLAA2 $
                                                   Symmetric merge
MERGE
         MQT, MTQ, MLAA2, , /MLAA1 $
                                                   Add partitions
ADD5
                                                   Label as symmetric
MODTRL
         MLAA1///6 $
                                                   Symmetric merge
         KQQ,,,,VAQT,/KLAA $
MERGE
                                                   Go on to make GOA
JUMP
         MAKEGOA $
                                                   Before forming GOA
ALTER
         853 $ V67
         MAKEGOA $
                                                   Make GOA
LABEL
 Prior to calculating system modes, remove the R-set partitions
  of the system stiffness and mass matrices. This will cause the "system modes" to be identical to the fixed-interface component
$ $ $ $
  modes of the upstream superelement.
         1021,1052 $ V67
ALTER
                                                    Remove auto-OMIT
         MKAA, VALCOMP, /KXX, , , / $
                                                    Symmetric partition
PARTN
         MMAA, VALCOMP, /MXX, , , / $
                                                    Symmetric partition
PARTN
                                                    Replace READ
         1057,1057 $ V67
ALTER
         KXX,MXX,,,EED,,CASES,/LAMA,PHIX,MI,OEIGS/
V,N,READAPP='MODES'/S,N,NEIGV $ Mc
READ
                                                    Modes
         1061,1061 $ V67
                                                    Replace REIGL
ALTER
         KXX, MXX, DYNAMICS, CASES, , , , / LAMA, PHIX, MI,
REIGL
         EIGVMAT, OUTVEC/V, N, READAPP/S, N, NEIGV $ Modes
                                                    Remove auto-expand
ALTER
         1066,1071 $ V67
         PHIX,,,,,VALCOMP/PHIA/1 $
MERGE
                                                    Row merge
  Build A-set matrices for the enforced acceleration solution
                                                  вин | 0
                             мнн 0
                        M = -----
                                             B = ----+----
                              0 | IRR
                                                   0 | 0
$
                                                    Replace TRD1
ALTER
         1131,1131 $ V67
         ,/IRR/1/NORSET $
                                                    R-set identity matrix
MATGEN
          ,/NULLLL/7/NOLSET/NOLSET $
                                                    Null L-set sq. matrix
MATGEN
                                                    KHH merged to L-set
          NULLLL, KHH/KHH1 $
ADD
                                                    MHH merged to L-set
          NULLLL, MHH/MHH1 $
ADD
                                                    BHH merged to L-set
ADD
          NULLLL, BHH/BHH1 $
                                                   KAA for enforced accel
MAA for enforced accel
         KHH1,,,,VALCOMP,/KAAENFA/$
MERGE
          MHH1,,,IRR, VALCOMP,/MAAENFA/ $
MERGE
          BHH1, , , , VALCOMP, /BAAENFA/ $
                                                    BAA for enforced accel
MERGE
   Build A-set forces for the enforced acceleration solution
        -Mqt Ut
                   -Mlr Pr
   P = -----
50 50 50 50
                       Pr
           Ūŧ
          PDT,, VALCOMP/, PRT,, /1 $
                                                    Row partition
PARTN
                                                    - MLR * PRT
          MLR, PRT, /PLT//-1 $
MPYAD
          PLT, PRT, , , , VALCOMP/PAENFA/1 $
                                                    Row merge
MERGE
   Perform the transient solution
          CASES, TRL, NLFT, DIT, KAAENFA, BAAENFA, MAAENFA, PAENFA/
TRD1
          UHVF, PNLH/'MODAL'/NOUE/V, Y, NONCUP=-1/0 $ Modal transient
   Remove solution set output
                                                    Remove MODOUT, HSORT1
          1133,1149 $ V67
 ALTER
    Rename the transient response output
                                                    Replace MPYAD
          1155,1155 $ V67
 ALTER
                                                     Rename
 ADD
          UHVF1,/UDV $
```